Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-6th-edition.csl
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
MR and CT data with multiobserver delineations of organs in the pelvic area: Part of the Gold Atlas project
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.ORCID-id: 0000-0002-8971-9788
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: Medical physics (Lancaster), ISSN 0094-2405, Vol. 45, nr 3, s. 1295-1300Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Purpose: We describe a public dataset with MR and CT images of patients performed in the same position with both multiobserver and expert consensus delineations of relevant organs in the male pelvic region. The purpose was to provide means for training and validation of segmentation algorithms and methods to convert MR to CT like data, i.e., so called synthetic CT (sCT).

Acquisition and validation methods: T1- and T2-weighted MR images as well as CT data were collected for 19 patients at three different departments. Five experts delineated nine organs for each patient based on the T2-weighted MR images. An automatic method was used to fuse the delineations. Starting from each fused delineation, a consensus delineation was agreed upon by the five experts for each organ and patient. Segmentation overlap between user delineations with respect to the consensus delineations was measured to describe the spread of the collected data. Finally, an open-source software was used to create deformation vector fields describing the relation between MR and CT images to further increase the usability of the dataset.

Data format and usage notes: The dataset has been made publically available to be used for academic purposes, and can be accessed from . Potential applicationsThe dataset provides a useful source for training and validation of segmentation algorithms as well as methods to convert MR to CT-like data (sCT). To give some examples: The T2-weighted MR images with their consensus delineations can directly be used as a template in an existing atlas-based segmentation engine; the expert delineations are useful to validate the performance of a segmentation algorithm as they provide a way to measure variability among users which can be compared with the result of an automatic segmentation; and the pairwise deformably registered MR and CT images can be a source for an atlas-based sCT algorithm or for validation of sCT algorithm.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2018. Vol. 45, nr 3, s. 1295-1300
Nyckelord [en]
CT, MRI, open dataset, organs at risk, radiotherapy
Nationell ämneskategori
Medicinsk bildvetenskap
Identifikatorer
URN: urn:nbn:se:umu:diva-146581DOI: 10.1002/mp.12748ISI: 000427129700032PubMedID: 29322528Scopus ID: 2-s2.0-85040965918OAI: oai:DiVA.org:umu-146581DiVA, id: diva2:1224076
Tillgänglig från: 2018-06-26 Skapad: 2018-06-26 Senast uppdaterad: 2025-02-09Bibliografiskt granskad

Open Access i DiVA

fulltext(323 kB)554 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 323 kBChecksumma SHA-512
41109a3ba30e34eae470b5d5d6f7810a7315daa740a22ad67992d2599510c7828c7f102fa3408b4f2350536b4b942c916d99376e4500ecc9e9545a7cb7fe396f
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Nyholm, TufveJonsson, JoakimSöderström, KarinBlomqvist, LennartZackrisson, Björn

Sök vidare i DiVA

Av författaren/redaktören
Nyholm, TufveJonsson, JoakimSöderström, KarinBlomqvist, LennartZackrisson, Björn
Av organisationen
RadiofysikOnkologi
I samma tidskrift
Medical physics (Lancaster)
Medicinsk bildvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 554 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 574 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-6th-edition.csl
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf