Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Bit-Encoding Based New Data Structure for Time and Memory Efficient Handling of Spike Times in an Electrophysiological Setup
Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB). Neuronano Research Center, Integrative Neurophysiology and Neurotechnology, Lund University, Lund, Sweden.ORCID-id: 0000-0001-6697-0171
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: Neuroinformatics, ISSN 1539-2791, E-ISSN 1559-0089, Vol. 16, nr 2, s. 217-229Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Recent neuroscientific and technical developments of brain machine interfaces have put increasing demands on neuroinformatic databases and data handling software, especially when managing data in real time from large numbers of neurons. Extrapolating these developments we here set out to construct a scalable software architecture that would enable near-future massive parallel recording, organization and analysis of neurophysiological data on a standard computer. To this end we combined, for the first time in the present context, bit-encoding of spike data with a specific communication format for real time transfer and storage of neuronal data, synchronized by a common time base across all unit sources. We demonstrate that our architecture can simultaneously handle data from more than one million neurons and provide, in real time (< 25 ms), feedback based on analysis of previously recorded data. In addition to managing recordings from very large numbers of neurons in real time, it also has the capacity to handle the extensive periods of recording time necessary in certain scientific and clinical applications. Furthermore, the bit-encoding proposed has the additional advantage of allowing an extremely fast analysis of spatiotemporal spike patterns in a large number of neurons. Thus, we conclude that this architecture is well suited to support current and near-future Brain Machine Interface requirements.

Ort, förlag, år, upplaga, sidor
Springer, 2018. Vol. 16, nr 2, s. 217-229
Nyckelord [en]
Electrophysiology, Databases, Data encoding, Real time
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-151182DOI: 10.1007/s12021-018-9367-zISI: 000434178500008PubMedID: 29508123Scopus ID: 2-s2.0-85045150330OAI: oai:DiVA.org:umu-151182DiVA, id: diva2:1245532
Tillgänglig från: 2018-09-05 Skapad: 2018-09-05 Senast uppdaterad: 2023-03-23Bibliografiskt granskad

Open Access i DiVA

fulltext(3704 kB)266 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3704 kBChecksumma SHA-512
2def34f3f7d271af7d264e93ed0f6fe75b2e0347fc3062b79d20b065d215d00ddda585c119db1ea1bd0231e4f20df4577464323c23ffa5d9294223f01df37036
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Petersson, Per

Sök vidare i DiVA

Av författaren/redaktören
Petersson, Per
Av organisationen
Institutionen för integrativ medicinsk biologi (IMB)
I samma tidskrift
Neuroinformatics
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 266 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 4395 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf