The conventional way of introducing relativity when teaching electrodynamics is to leave Gibbs' vector calculus for a more general tensor calculus. This sudden change of formalism can be quite problematic for the students and we therefore in this two-part paper consider alternate approaches. In this Part I we use a simplified tensor formalism with 4-vectors and 4-dyadics (i.e., second order tensors built by 4-vectors) but with no tensors of higher order than two. This allows for notations in good contact with the coordinate-free Gibbs' vector calculus that the students already master. Thus we use boldface notations for 4-vectors and 4-dyadics without coordinates and index algebra to formulate Lorentz transformations, Maxwell's equations, the equation of the motion of charged particles and the stress-energy conservation law. By first working with this simplified tensor formalism the students will get better prepared to learn the standard tensor calculus needed in more advanced courses.