Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Teaching Data Science the Interdisciplinary Way: Learning Cycles and Diverse Skillsets
Umeå universitet, Samhällsvetenskapliga fakulteten, Institutionen för informatik. (Swedish Center for Digital Innovation)ORCID-id: 0000-0002-0441-0547
Umeå universitet, Samhällsvetenskapliga fakulteten, Institutionen för informatik. (Swedish Center for Digital Innovation)ORCID-id: 0000-0003-0602-5404
2018 (Engelska)Konferensbidrag, Enbart muntlig presentation (Övrigt vetenskapligt)
Abstract [en]

Due to the potential to extract useful knowledge by means of data mining and statistical analysis, there has been a significant increase in education that teach data science courses, issues degree certificates, and offers master’s programs. Such programs focus on three skill sets: 1) information technology skills necessary for accessing and working with data (e.g. relational databases, OLAP); 2) analytical skills drawing from various disciplines that enable data analysis (e.g. statistical analysis, machine learning, econometrics); 3) business and communication skills that facilitate appropriate problem formulation and value extraction from data science solutions. Successful educational programs need to synthesize and balance these three aspects.However, recent reports show that academic programs consistently underperform in preparing data science professionals. We studied the challenges and opportunities of teaching data science skills to students of diverse backgrounds (often the case in Master’s level programs). Our preliminary findings suggest that to balance the three skill sets educators need to recognize their distinct learning cycles. A learning cycle consists of exploration, concept introduction, and application and the emphasis on each stage varies greatly across skill sets. Technical data science skills rely on a multitude of separate systems and technologies involving numerous concepts that require continuous exploration, short cycles of learning (and assessment). Analytical skills require deeper engagement, hence longer learning cycles with an emphasis on concept introduction and formal instruction. Business and communication skills rely on engagement with high-level social systems (e.g. an organization, a market) and require longer involvement with the learning context, almost exclusively achieved by simulation projects or projects with industry partners. Our study indicates that data science education must consider the distinct learning cycles students experience, and suggests methods for doing so.

Ort, förlag, år, upplaga, sidor
2018.
Nyckelord [en]
Data science, Information Systems, Teaching, Learning Cycle, Analytics, data science education
Nationell ämneskategori
Systemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktning Pedagogik Systemvetenskap, informationssystem och informatik
Forskningsämne
företagsekonomi; data- och systemvetenskap; pedagogik; systemanalys
Identifikatorer
URN: urn:nbn:se:umu:diva-153462OAI: oai:DiVA.org:umu-153462DiVA, id: diva2:1264931
Konferens
The 6th Swedish Workshop on Data Science, Umeå University, Sweden, November 20-21, 2018
Tillgänglig från: 2018-11-21 Skapad: 2018-11-21 Senast uppdaterad: 2024-07-02Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Person

Mankevich, VasiliSandberg, Johan

Sök vidare i DiVA

Av författaren/redaktören
Mankevich, VasiliSandberg, Johan
Av organisationen
Institutionen för informatik
Systemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktningPedagogikSystemvetenskap, informationssystem och informatik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 612 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf