Hyperedge replacement (HR) grammars can generate NP-complete graph languages, which makes parsing hard even for fixed HR languages. Therefore, we study predictive shift-reduce (PSR) parsing that yields efficient parsers for a subclass of HR grammars, by generalizing the concepts of SLR(1) string parsing to graphs. We formalize the construction of PSR parsers and show that it is correct. PSR parsers run in linear space and time, and are more efficient than the predictive top-down (PTD) parsers recently developed by the authors.