Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Can pulsatile CSF flow across the cerebral aqueduct cause ventriculomegaly?: A prospective study of patients with communicating hydrocephalus.
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.ORCID-id: 0000-0002-1141-5143
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
Umeå universitet, Medicinska fakulteten, Institutionen för farmakologi och klinisk neurovetenskap, Klinisk neurovetenskap.ORCID-id: 0000-0001-6451-1940
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik. Umeå universitet, Medicinska fakulteten, Umeå centrum för funktionell hjärnavbildning (UFBI).ORCID-id: 0000-0002-2031-722X
2019 (Engelska)Ingår i: Fluids and Barriers of the CNS, E-ISSN 2045-8118, Vol. 16, nr 1, artikel-id 40Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background: Communicating hydrocephalus is a disease where the cerebral ventricles are enlarged. It is characterized by the absence of detectable cerebrospinal fluid (CSF) outflow obstructions and often with increased CSF pulsatility measured in the cerebral aqueduct (CA). We hypothesize that the cardiac-related pulsatile flow over the CA, with fast systolic outflow and slow diastolic inflow, can generate net pressure effects that could source the ventriculomegaly in these patients. This would require a non-zero cardiac cycle averaged net pressure difference (ΔPnet) over the CA, with higher average pressure in the lateral and third ventricles.

Methods: We tested the hypothesis by calculating ΔPnet across the CA using computational fluid dynamics based on prospectively collected high-resolution structural (FIESTA-C, resolution 0.39 × 0.39 × 0.3 mm3) and velocimetric (2D-PCMRI, in-plane resolution 0.35 × 0.35 mm2) MRI-data from 30 patients investigated for communicating hydrocephalus.

Results: The ΔPnet due to CSF pulsations was non-zero for the study group (p = 0.03) with a magnitude of 0.2 ± 0.4 Pa (0.001 ± 0.003 mmHg), with higher pressure in the third ventricle. The maximum pressure difference over the cardiac cycle ΔPmax was 20.3 ± 11.8 Pa and occurred during systole. A generalized linear model verified an association between ΔPnet and CA cross-sectional area (p = 0.01) and flow asymmetry, described by the ratio of maximum inflow/outflow (p = 0.04), but not for aqueductal stroke volume (p = 0.35).

Conclusions: The results supported the hypothesis with respect to the direction of ΔPnet, although the magnitude was low. Thus, although the pulsations may generate a pressure difference across the CA it is likely too small to explain the ventriculomegaly in communicating hydrocephalus.

Ort, förlag, år, upplaga, sidor
BioMed Central, 2019. Vol. 16, nr 1, artikel-id 40
Nyckelord [en]
Communicating hydrocephalus, computational fluid dynamics, cerebrospinal fluid pressure, brain imaging, cerebral aqueduct
Nationell ämneskategori
Medicinteknik
Identifikatorer
URN: urn:nbn:se:umu:diva-157029DOI: 10.1186/s12987-019-0159-0ISI: 000504082400001PubMedID: 31865917Scopus ID: 2-s2.0-85077053909OAI: oai:DiVA.org:umu-157029DiVA, id: diva2:1294052
Forskningsfinansiär
RymdstyrelsenVetenskapsrådet, grant 2015-05616Hjärt-Lungfonden, grant 20140592
Anmärkning

Originally included in thesis in manuscript form

Tillgänglig från: 2019-03-06 Skapad: 2019-03-06 Senast uppdaterad: 2024-01-17Bibliografiskt granskad
Ingår i avhandling
1. Fluid dynamic principles for analysis of intracranial pressure control: application towards space medicine and hydrocephalus
Öppna denna publikation i ny flik eller fönster >>Fluid dynamic principles for analysis of intracranial pressure control: application towards space medicine and hydrocephalus
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Fluiddynamiska principer för analys av intrakraniellt tryck och dess reglering : för tillämpning inom rymdmedicin och hydrocefalus
Abstract [en]

Intracranial pressure (ICP) is an important component of the fluid dynamic environment of the brain and plays a central role with regards to the maintenance of normal cerebral blood flow and neuronal function. However, many regulatory mechanisms controlling the ICP are still poorly understood. One major gap in knowledge in this regard is the mechanism behind the postural/gravitational control of ICP. This is partly due to the fact that most ICP investigations are performed with the patients in a supine or recumbent position. Since most people spend 16 hours a day in an upright position, understanding these mechanics is highly motivated. Also spurring research on this topic is the increasing number of reports of the spaceflight-associated neuro-ocular syndrome (SANS) found in astronauts after prolonged exposure to weightlessness (i.e. microgravity), where evidence suggests that a disrupted balance between ICP and intraocular pressure (IOP) may be an underlying cause. Understanding how ICP is regulated with respect to posture could therefore provide important insight into the alterations introduced by microgravity, where postural effects are removed, and how to improve the safety of astronauts who are susceptible to this syndrome. Here on earth, disturbances in the ICP or cerebrospinal fluid (CSF) dynamics are associated with the development of chronic neurological diseases. One particular disease of interest is communicating hydrocephalus, where the cerebral ventricles are enlarged despite the absence of macroscopic CSF flow obstructions. A common finding in these patients is that of altered pulsatile flow in the CSF. The overall aim of this thesis was to utilize fluid dynamic principles to describe and validate potential regulatory mechanisms behind postural changes in ICP and causes of ventriculomegaly. The thesis is based on four scientific papers (paper I—IV).

A postural dependency of the IOP-ICP pressure difference was verified by simultaneous measurements of ICP (assessed through lumbar puncture) and IOP (measured with an Applanation Resonance Tonometer) (paper I). Based on these measurements, a 24-hour average of the IOP-ICP pressure difference at the level of the eye was estimated for the state of microgravity, predicting a reduced pressure difference in space compared with that on earth.

A hypothesis where postural changes in ICP are described by hydrostatic effects in the venous system, and where these effects are altered by the collapse of the internal jugular veins (IJVs) in more upright positions, was evaluated (paper II and III). Using ultrasound data, it was shown that the venous hydrostatic pressure gradient was balanced by viscous pressure losses in the collapsed IJVs to uphold a near atmospheric pressure at the level of the neck in the upright posture (paper II). A full evaluation of the hypothesis was then performed, based on simultaneous assessment of ICP, central venous pressure (through a PICC-line) and venous collapse in 7 postures of upper-body tilt in healthy volunteers (paper III).The proposed description could accurately predict the general changes seen in the measured ICP for all investigated postures (mean difference: -0.03±2.7 mmHg or -4.0±360 Pa).

Pulsatile CSF flow-induced pressure differences between the ventricles and subarachnoid space were evaluated as a source for ventriculomegaly in communicating hydrocephalus (paper IV). The pressure distributions resulting from the pulsatile CSF flow were calculated using computational fluid dynamics based on MRI data. The estimated pressures revealed a net pressure difference (mean: 0.001±0.003 mmHg or 0.2±0.4 Pa, p=0.03) between the ventricles and the subarachnoid space, over the cardiac cycle, with higher pressure in the third and lateral ventricles.

In conclusion, the results of this thesis support venous hydrostatics and jugular venous collapse as key governing factors in the postural/gravitational control of ICP. Furthermore, a postural dependency of the IOP-ICP pressure difference was demonstrated, providing a potential explanation for how an imbalance between the pressure of the eye and brain can be introduced in microgravity. Computational fluid dynamic analysis revealed that the altered pulsations in communicating hydrocephalus generate a pressure gradient within the CSF system. However, the gradient was small and additional effects are probably needed to explain the ventriculomegaly in these patients. 

Ort, förlag, år, upplaga, sidor
Umeå: Umeå Universitet, 2019. s. 67
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 2018
Nyckelord
Intracranial pressure, posture, cerebrospinal fluid, microgravity, venous collapse, internal jugular vein, fluid dynamics, venous pressure, spaceflight-associated neuro-ocular syndrome, hydrocephalus, mathematical modeling, ultrasound, magnetic resonance imaging
Nationell ämneskategori
Fysiologi och anatomi
Identifikatorer
urn:nbn:se:umu:diva-157031 (URN)978-91-7855-029-6 (ISBN)
Disputation
2019-03-29, Hörsal B, Unod T9, Norrlands Universitetssjukhus, Umeå, 13:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
RymdstyrelsenVetenskapsrådet, grant 2015-05616Hjärt-Lungfonden, grant 20140592
Tillgänglig från: 2019-03-08 Skapad: 2019-03-06 Senast uppdaterad: 2025-02-10Bibliografiskt granskad

Open Access i DiVA

fulltext(1479 kB)342 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1479 kBChecksumma SHA-512
1e25966f0d65afa8d01daf6c5b6a52d887e72e96698f47a49d6fcbbea6b54ace4a50f93d7cfbe003e1e87272adb7a77f7044f3db252204c7d2cf6038b32ca9dd
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Holmlund, PetterQvarlander, SaraMalm, JanEklund, Anders

Sök vidare i DiVA

Av författaren/redaktören
Holmlund, PetterQvarlander, SaraMalm, JanEklund, Anders
Av organisationen
RadiofysikKlinisk neurovetenskapUmeå centrum för funktionell hjärnavbildning (UFBI)
I samma tidskrift
Fluids and Barriers of the CNS
Medicinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 342 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 609 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf