Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
GWASinlps: non-local prior based iterative SNP selection tool for genome-wide association studies
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Diagnostisk radiologi.ORCID-id: 0000-0003-4908-341X
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Bioinformatics, ISSN 1367-4803, E-ISSN 1367-4811, Vol. 35, nr 1, s. 1-11Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Motivation: Multiple marker analysis of the genome-wide association study (GWAS) data has gained ample attention in recent years. However, because of the ultra high-dimensionality of GWAS data, such analysis is challenging. Frequently used penalized regression methods often lead to large number of false positives, whereas Bayesian methods are computationally very expensive. Motivated to ameliorate these issues simultaneously, we consider the novel approach of using non-local priors in an iterative variable selection framework.

Results: We develop a variable selection method, named, iterative non-local prior based selection for GWAS, or GWASinlps, that combines, in an iterative variable selection framework, the computational efficiency of the screen-and-select approach based on some association learning and the parsimonious uncertainty quantification provided by the use of non-local priors. The hallmark of our method is the introduction of 'structured screen-and-select' strategy, that considers hierarchical screening, which is not only based on response-predictor associations, but also based on response-response associations and concatenates variable selection within that hierarchy. Extensive simulation studies with single nucleotide polymorphisms having realistic linkage disequilibrium structures demonstrate the advantages of our computationally efficient method compared to several frequentist and Bayesian variable selection methods, in terms of true positive rate, false discovery rate, mean squared error and effect size estimation error. Further, we provide empirical power analysis useful for study design. Finally, a real GWAS data application was considered with human height as phenotype.

Ort, förlag, år, upplaga, sidor
Oxford University Press, 2019. Vol. 35, nr 1, s. 1-11
Nationell ämneskategori
Bioinformatik (beräkningsbiologi)
Identifikatorer
URN: urn:nbn:se:umu:diva-157234DOI: 10.1093/bioinformatics/bty472ISI: 000459313900001PubMedID: 29931045Scopus ID: 2-s2.0-85058771930OAI: oai:DiVA.org:umu-157234DiVA, id: diva2:1297625
Tillgänglig från: 2019-03-20 Skapad: 2019-03-20 Senast uppdaterad: 2023-03-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Kauppi, Karolina

Sök vidare i DiVA

Av författaren/redaktören
Kauppi, Karolina
Av organisationen
Diagnostisk radiologi
I samma tidskrift
Bioinformatics
Bioinformatik (beräkningsbiologi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 346 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf