Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-6th-edition.csl
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Microwave-Induced Structural Ordering of Resilient Nanostructured L10-FePt Catalysts for Oxygen Reduction Reaction
Umeå University, Faculty of Science and Technology, Department of Physics.ORCID iD: 0000-0002-6830-2174
Umeå University, Faculty of Science and Technology, Department of Physics.ORCID iD: 0000-0001-9239-0541
Umeå University, Faculty of Science and Technology, Department of Physics.ORCID iD: 0000-0002-5210-2645
Linköping University. (Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM))ORCID iD: 0000-0001-9140-6724
Show others and affiliations
2020 (English)In: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 3, no 10, p. 9785-9791Article in journal (Refereed) Published
Abstract [en]

We show how structurally ordered L10 face-centered tetragonal (fct) FePt nanoparticles are produced by a solid-state microwave-assisted synthesis method. The structural phase as well as the incorporated Fe into the nanoparticles is confirmed by X-ray diffraction and high resolution high-angle annular dark field scanning transmission electron microscopy experiments. The prepared particles exhibit a remarkable resilience toward crystallite growth at high temperatures. Directly correlated to the L10 phase, the best oxygen reduction reaction (ORR) characteristics are achieved for particles with a 1:1 Fe:Pt atomic ratio and an average size of ~2.9 nm where Pt-specific evaluation provided a high mass and specific activity of ~570 A/gPt and ~600 μA/cm2Pt respectively. Our results demonstrate that well-structured catalysts possessing activities vastly exceeding Pt/C (~210 A/gPt & ~250 μA/cm2Pt), can be synthesized through a fast and highly eco-friendly method. We note that the achieved mass activity represent a significant leap toward the theoretical maximum for fully ordered FePt nanoparticles.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2020. Vol. 3, no 10, p. 9785-9791
Keywords [en]
Proton exchange membrane fuel cell, platinum iron, Oxygen reduction reaction, microwave synthesis, L1(0) phase, FePt-nanoparticles, electrocatalysts, structural ordering, electron microscopy
National Category
Nano Technology Other Materials Engineering Condensed Matter Physics
Research subject
Materials Science; nanomaterials; nanoparticles; Solid State Physics
Identifiers
URN: urn:nbn:se:umu:diva-158495DOI: 10.1021/acsaem.0c01368ISI: 000586710300036Scopus ID: 2-s2.0-85096581760OAI: oai:DiVA.org:umu-158495DiVA, id: diva2:1307776
Funder
Swedish Research Council, 2017-04862Swedish Energy Agency, 45419-1Interreg NordÅForsk (Ångpanneföreningen's Foundation for Research and Development), 15-483Swedish Research Council, 2016‐04412Swedish Foundation for Strategic Research , RIF 14‐0074Swedish Research Council, 2018-03937Olle Engkvists stiftelse, 186-0637
Note

Originally included in thesis in manuscript form  

Available from: 2019-04-29 Created: 2019-04-29 Last updated: 2023-03-24Bibliographically approved
In thesis
1. Innovations in nanomaterials for proton exchange membrane fuel cells
Open this publication in new window or tab >>Innovations in nanomaterials for proton exchange membrane fuel cells
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Utveckling av nanomaterial för polymerelektrolytbränsleceller
Abstract [en]

Hydrogen technologies are rapidly receiving increased attention as it offers a renewable energy alternative to the current petroleum-based fuel infrastructure, considering that continued large-scale use of such fossil fuels will lead to disastrous impacts on our environment. The proton exchange membrane fuel cell should play a significant role in a hydrogen economy since it enables convenient and direct conversion of hydrogen into electricity, thus allowing the use of hydrogen in applications particularly suited for the transportation industry. To fully realize this, multiple engineering challenges as well as development of advanced nanomaterials must however be addressed.

In this thesis, we present discoveries of new innovative nanomaterials for proton exchange membrane fuel cells by targeting the entire membrane electrode assembly. Conceptually, we first propose new fabrication techniques of gas diffusion electrodes based on helical carbon nanofibers, where an enhanced three-phase boundary was noted in particular for hierarchical structures. The cathode catalyst, responsible for facilitating the sluggish oxygen reduction reaction, was further improved by the synthesis of platinum-based nanoparticles with an incorporated secondary metal (iron, yttrium and cobalt). Here, both solvothermal and high-temperature microwave syntheses were employed. Catalytic activities were improved compared to pure platinum and could be attributed to favorably shifted oxygen adsorption energies as a result of successful incorporation of the non-precious metal. As best exemplified by platinum-iron nanoparticles, the oxygen reduction reaction was highly sensitive to both metal composition and the type of crystal structure. Finally, a proton exchange membrane based on fluorine and sulfonic acid functionalized graphene oxide was prepared and tested in hydrogen fuel cell conditions, showing improvements such as lowered hydrogen permeation and better structural stability. Consequently, we have demonstrated that there is room for improvement of multiple components, suggesting that more powerful fuel cells can likely be anticipated in the future.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2019. p. 88
Keywords
Fuel Cells, Membrane Electrode Assembly, Oxygen Reduction Reaction, Platinum alloy catalyst, Nanoparticles, Gas Diffusion Electrode, Proton Exchange Membrane
National Category
Energy Systems Nano Technology Other Materials Engineering Other Chemical Engineering Condensed Matter Physics
Research subject
Materials Science; Solid State Physics
Identifiers
urn:nbn:se:umu:diva-158501 (URN)978-91-7855-044-9 (ISBN)
Public defence
2019-05-28, N460, Naturvetarhuset, Umeå, 10:15 (English)
Opponent
Supervisors
Available from: 2019-05-07 Created: 2019-04-29 Last updated: 2019-05-06Bibliographically approved

Open Access in DiVA

fulltext(4121 kB)218 downloads
File information
File name FULLTEXT01.pdfFile size 4121 kBChecksum SHA-512
7b56b668b1c580dc3aa6653f8c396a00084bef51a93d32a0622a77e5e9344ce3451247b31113086adde67f1341211c3a0d880f7a5398b20df46b72dfc2c5ed48
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Sandström, RobinGracia-Espino, EduardoAnnamalai, AlagappanEkspong, JoakimBarzegar, Hamid RezaWågberg, Thomas

Search in DiVA

By author/editor
Sandström, RobinGracia-Espino, EduardoAnnamalai, AlagappanPersson, PerPersson, IngemarEkspong, JoakimBarzegar, Hamid RezaWågberg, Thomas
By organisation
Department of Physics
In the same journal
ACS Applied Energy Materials
Nano TechnologyOther Materials EngineeringCondensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 218 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 650 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-6th-edition.csl
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf