Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
'Birth defects' of photosystem II make it highly susceptible to photodamage during chloroplast biogenesis
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.ORCID-id: 0000-0002-5174-083X
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Physiologia Plantarum, ISSN 0031-9317, E-ISSN 1399-3054, Vol. 166, nr 1, s. 165-180Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

High solar flux is known to diminish photosynthetic growth rates, reducing biomass productivity and lowering disease tolerance. Photosystem II (PSII) of plants is susceptible to photodamage (also known as photoinactivation) in strong light, resulting in severe loss of water oxidation capacity and destruction of the water‐oxidizing complex (WOC). The repair of damaged PSIIs comes at a high energy cost and requires de novo biosynthesis of damaged PSII subunits, reassembly of the WOC inorganic cofactors and membrane remodeling. Employing membrane‐inlet mass spectrometry and O2‐polarography under flashing light conditions, we demonstrate that newly synthesized PSII complexes are far more susceptible to photodamage than are mature PSII complexes. We examined these ‘PSII birth defects’ in barley seedlings and plastids (etiochloroplasts and chloroplasts) isolated at various times during de‐etiolation as chloroplast development begins and matures in synchronization with thylakoid membrane biogenesis and grana membrane formation. We show that the degree of PSII photodamage decreases simultaneously with biogenesis of the PSII turnover efficiency measured by O2‐polarography, and with grana membrane stacking, as determined by electron microscopy. Our data from fluorescence, QB‐inhibitor binding, and thermoluminescence studies indicate that the decline of the high‐light susceptibility of PSII to photodamage is coincident with appearance of electron transfer capability QA− → QB during de‐etiolation. This rate depends in turn on the downstream clearing of electrons upon buildup of the complete linear electron transfer chain and the formation of stacked grana membranes capable of longer‐range energy transfer.

Ort, förlag, år, upplaga, sidor
Wiley-Blackwell, 2019. Vol. 166, nr 1, s. 165-180
Nyckelord [en]
Practice variation, Bronchopulmonary dysplasia, Preterm infants, Ventilation
Nationell ämneskategori
Biofysik
Identifikatorer
URN: urn:nbn:se:umu:diva-158931DOI: 10.1111/ppl.12932ISI: 000466108300014PubMedID: 30693529Scopus ID: 2-s2.0-85062371385OAI: oai:DiVA.org:umu-158931DiVA, id: diva2:1315966
Forskningsfinansiär
VetenskapsrådetVetenskapsrådet
Anmärkning

Special Issue: SI

Tillgänglig från: 2019-05-15 Skapad: 2019-05-15 Senast uppdaterad: 2025-02-20Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Shevela, DmitriyMessinger, Johannes

Sök vidare i DiVA

Av författaren/redaktören
Shevela, DmitriyMessinger, Johannes
Av organisationen
Kemiska institutionen
I samma tidskrift
Physiologia Plantarum
Biofysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 348 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf