Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Smoothing parameter and model selection for general smooth models
2016 (Engelska)Ingår i: Journal of the American Statistical Association, ISSN 0162-1459, E-ISSN 1537-274X, Vol. 111, nr 516, s. 1548-1563Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This article discusses a general framework for smoothing parameter estimation for models with regular likelihoods constructed in terms of unknown smooth functions of covariates. Gaussian random effects and parametric terms may also be present. By construction the method is numerically stable and convergent, and enables smoothing parameter uncertainty to be quantified. The latter enables us to fix a well known problem with AIC for such models, thereby improving the range of model selection tools available. The smooth functions are represented by reduced rank spline like smoothers, with associated quadratic penalties measuring function smoothness. Model estimation is by penalized likelihood maximization, where the smoothing parameters controlling the extent of penalization are estimated by Laplace approximate marginal likelihood. The methods cover, for example, generalized additive models for nonexponential family responses (e.g., beta, ordered categorical, scaled t distribution, negative binomial and Tweedie distributions), generalized additive models for location scale and shape (e.g., two stage zero inflation models, and Gaussian location scale models), Cox proportional hazards models and multivariate additive models. The framework reduces the implementation of new model classes to the coding of some standard derivatives of the log-likelihood. Supplementary materials for this article are available online.

Ort, förlag, år, upplaga, sidor
2016. Vol. 111, nr 516, s. 1548-1563
Nyckelord [en]
Additive model, AIC, Distributional regression, GAM, Location scale and shape model, Ordered categorical regression, Penalized regression spline, REML, Smooth Cox model, Smoothing parameter uncertainty, Statistical algorithm, Tweedie distribution
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:umu:diva-160060DOI: 10.1080/01621459.2016.1180986ISI: 000391900700023OAI: oai:DiVA.org:umu-160060DiVA, id: diva2:1323513
Tillgänglig från: 2019-06-12 Skapad: 2019-06-12 Senast uppdaterad: 2019-06-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Pya Arnqvist, Natalya

Sök vidare i DiVA

Av författaren/redaktören
Pya Arnqvist, Natalya
I samma tidskrift
Journal of the American Statistical Association
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 439 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf