Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Microarray Missing Value Imputation: A Regularized Local Learning Method
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: IEEE/ACM Transactions on Computational Biology & Bioinformatics, ISSN 1545-5963, E-ISSN 1557-9964, Vol. 16, nr 3, s. 980-993Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Microarray experiments on gene expression inevitably generate missing values, which impedes further downstream biological analysis. Therefore, it is key to estimate the missing values accurately. Most of the existing imputation methods tend to suffer from the over-fitting problem. In this study, we propose two regularized local learning methods for microarray missing value imputation. Motivated by the grouping effect of L-2 regularization, after selecting the target gene, we train an L-2 Regularized Local Least Squares imputation model (RLLSimpute_L2) on the target gene and its neighbors to estimate the missing values of the target gene. Furthermore, RLLSimpute_L2 imputes the missing values in an ascending order based on the associated missing rate with each target gene. This contributes to fully utilizing the previously estimated values. Besides L-2, we further explore L-1 regularization and propose an L-1 Regularized Local Least Squares imputation model (RLLSimpute_L1). To evaluate their effectiveness, we conducted extensive experimental studies on six benchmark datasets covering both time series and non-time series cases. Nine state-of-the-art imputation methods are compared with RLLSimpute_L2 and RLLSimpute_L1 in terms of three performance metrics. The comparative experimental results indicate that RLLSimpute_L2 outperforms its competitors by achieving smaller imputation errors and better structure preservation of differentially expressed genes.

Ort, förlag, år, upplaga, sidor
IEEE, 2019. Vol. 16, nr 3, s. 980-993
Nyckelord [en]
Microarray data, missing value imputation, regularized model, local learning, similarity measurement
Nationell ämneskategori
Bioinformatik och systembiologi
Identifikatorer
URN: urn:nbn:se:umu:diva-161474DOI: 10.1109/TCBB.2018.2810205ISI: 000471070600028PubMedID: 29994588Scopus ID: 2-s2.0-85042860423OAI: oai:DiVA.org:umu-161474DiVA, id: diva2:1336293
Tillgänglig från: 2019-07-09 Skapad: 2019-07-09 Senast uppdaterad: 2023-03-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Jiang, Lili

Sök vidare i DiVA

Av författaren/redaktören
Jiang, Lili
Av organisationen
Institutionen för datavetenskap
I samma tidskrift
IEEE/ACM Transactions on Computational Biology & Bioinformatics
Bioinformatik och systembiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 263 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf