Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
De novo dNTP production is essential for normal postnatal murine heart development
Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. (Andrei Chabes)
Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. (Paulina Wanrooij)ORCID-id: 0000-0002-8607-7564
Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. (Andrei Chabes)ORCID-id: 0000-0003-2713-5813
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 394, nr 44, s. 15889-15897, artikel-id jbc.RA119.009492Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The building blocks of DNA, dNTPs, can be produced de novo or can be salvaged from deoxyribonucleosides. However, to what extent the absence of de novo dNTP production can be compensated for by the salvage pathway is unknown. Here, we eliminated de novo dNTP synthesis in the mouse heart and skeletal muscle by inactivating ribonucleotide reductase (RNR), a key enzyme for the de novo production of dNTPs, at embryonic day 13. All other tissues had normal de novo dNTP synthesis and theoretically could supply heart and skeletal muscle with deoxyribonucleosides needed for dNTP production by salvage. We observed that the dNTP and NTP pools in wild-type postnatal hearts are unexpectedly asymmetric, with unusually high dGTP and GTP levels compared with those in whole mouse embryos or murine cell cultures. We found that RNR inactivation in heart led to strongly decreased dGTP and increased dCTP, dTTP, and dATP pools; aberrant DNA replication; defective expression of muscle-specific proteins; progressive heart abnormalities; disturbance of the cardiac conduction system; and lethality between the second and fourth weeks after birth. We conclude that dNTP salvage cannot substitute for de novo dNTP synthesis in the heart and that cardiomyocytes and myocytes initiate DNA replication despite an inadequate dNTP supply. We discuss the possible reasons for the observed asymmetry in dNTP and NTP pools in wildtype hearts.

Ort, förlag, år, upplaga, sidor
American Society for Biochemistry and Molecular Biology, 2019. Vol. 394, nr 44, s. 15889-15897, artikel-id jbc.RA119.009492
Nyckelord [en]
cardiac function, cardiac muscle, dNTP metabolism, dNTP salvage, deoxyribonucleoside kinases, desmin, heart development, nucleoside/nucleotide biosynthesis, nucleoside/nucleotide metabolism, ribonucleotide reductase
Nationell ämneskategori
Cell- och molekylärbiologi
Identifikatorer
URN: urn:nbn:se:umu:diva-161767DOI: 10.1074/jbc.RA119.009492ISI: 000499478600002PubMedID: 31300555Scopus ID: 2-s2.0-85074444850OAI: oai:DiVA.org:umu-161767DiVA, id: diva2:1339513
Forskningsfinansiär
VetenskapsrådetCancerfondenTillgänglig från: 2019-07-30 Skapad: 2019-07-30 Senast uppdaterad: 2023-03-24Bibliografiskt granskad
Ingår i avhandling
1. Pathology of dNTP dysregulation
Öppna denna publikation i ny flik eller fönster >>Pathology of dNTP dysregulation
2020 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Patologier orsakade av dysfunktionell dNTP-reglering
Abstract [en]

Deoxyribonucleoside triphosphates (dNTPs) are precursors for DNA replication and repair. Mammalian cells have two distinct biosynthesis pathways to supply dNTPs: de novo and salvage pathways. These pathways are intimately coordinated to maintain optimal dNTP concentrations throughout different phases of the cell cycle, and perturbations in the production of dNTPs could lead to increased, decreased, or imbalanced dNTP pools. In yeasts, changes in both the level and balance of dNTPs increase mutation rates and genome instability. In mammals, elevated mutation rates and genome instability predispose to numerous diseases, including cancer. However, the correlation of dNTP changes with pathology has not been well established in mammals. In this thesis, I present how we addressed this issue using three separate mouse models – one with an increased dNTP pool, one with a decreased dNTP pool, and one with an imbalanced dNTP pool. To modulate dNTP levels in the mice, we deleted or mutated either sterile alpha motif and histidine-aspartic domain containing protein 1 (SAMHD1) or ribonucleotide reductase (RNR) proteins, which are involved in the salvage and de novo pathways, respectively. In the first model, mouse embryos without the SAMHD1 gene showed a slight increase in dNTP levels. A similar increase in dNTPs conferred moderately elevated mutation rates in cultured cancer cells. In the second model, we created a mouse strain carrying a modified allosteric specificity site in a subunit of RNR. Embryos with a heterozygous mutation had a mildly imbalanced dNTP pool. Heterozygous mutant mice showed a shorter lifespan and increased incidence and earlier onset of cancer. In the third model, the de novo dNTP production was inactivated in cardiac and skeletal muscles through the deletion of a gene encoding RNR. The hearts of knockout pups showed significant depletion of dNTPs, leading to aberrant DNA replication. In addition, knockout pups developed anatomic and histologic cardiac abnormalities and impaired cardiac conduction systems. As a result, they died between two and four weeks after birth. Taken together, our studies provide the first empirical evidence that both the de novo and salvage pathways are essential to keeping the dNTP concentration at an optimal range to prevent mutagenesis, carcinogenesis, and mortality.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2020. s. 43
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 2095
Nyckelord
dNTP metabolism, DNA replication, mutation rate, cancer, heart development, RNR, SAMHD1, Rrm1, Samhd1
Nationell ämneskategori
Naturvetenskap
Forskningsämne
medicinsk biokemi
Identifikatorer
urn:nbn:se:umu:diva-175260 (URN)978-91-7855-346-4 (ISBN)978-91-7855-345-7 (ISBN)
Disputation
2020-10-28, KB.E3.01, byggnad KBC, Umeå University, Umeå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2020-10-07 Skapad: 2020-09-23 Senast uppdaterad: 2024-07-02Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Tran, PhongWanrooij, Paulina H.Lorenzon, PaoloSharma, SushmaThelander, LarsNilsson, Anna KarinOlofsson, Anna-KarinMedini, Paolovon Hofsten, JonasStål, PerChabes, Andrei

Sök vidare i DiVA

Av författaren/redaktören
Tran, PhongWanrooij, Paulina H.Lorenzon, PaoloSharma, SushmaThelander, LarsNilsson, Anna KarinOlofsson, Anna-KarinMedini, Paolovon Hofsten, JonasStål, PerChabes, Andrei
Av organisationen
Institutionen för medicinsk kemi och biofysikInstitutionen för integrativ medicinsk biologi (IMB)Umeå centrum för molekylär medicin (UCMM)Molekylär Infektionsmedicin, Sverige (MIMS)
I samma tidskrift
Journal of Biological Chemistry
Cell- och molekylärbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 822 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf