Umeå universitets logga

umu.sePublikationer
Driftinformation
Ett driftavbrott i samband med versionsuppdatering är planerat till 10/12-2024, kl 12.00-13.00. Under den tidsperioden kommer DiVA inte att vara tillgängligt
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Gene expression profiles define molecular subtypes of prostate cancer bone metastases with different outcomes and morphology traceable back to the primary tumor
Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Patologi.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Patologi.
Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Patologi.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Molecular Oncology, ISSN 1574-7891, E-ISSN 1878-0261, Vol. 13, nr 8, s. 1763-1777Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Bone metastasis is the lethal end-stage of prostate cancer (PC), but the biology of bone metastases is poorly understood. The overall aim of this study was therefore to explore molecular variability in PC bone metastases of potential importance for therapy. Specifically, genome-wide expression profiles of bone metastases from untreated patients (n = 12) and patients treated with androgen-deprivation therapy (ADT, n = 60) were analyzed in relation to patient outcome and to morphological characteristics in metastases and paired primary tumors. Principal component analysis and unsupervised classification were used to identify sample clusters based on mRNA profiles. Clusters were characterized by gene set enrichment analysis and related to histological and clinical parameters using univariate and multivariate statistics. Selected proteins were analyzed by immunohistochemistry in metastases and matched primary tumors (n = 52) and in transurethral resected prostate (TUR-P) tissue of a separate cohort (n = 59). Three molecular subtypes of bone metastases (MetA-C) characterized by differences in gene expression pattern, morphology, and clinical behavior were identified. MetA (71% of the cases) showed increased expression of androgen receptor-regulated genes, including prostate-specific antigen (PSA), and glandular structures indicating a luminal cell phenotype. MetB (17%) showed expression profiles related to cell cycle activity and DNA damage, and a pronounced cellular atypia. MetC (12%) exhibited enriched stroma-epithelial cell interactions. MetB patients had the lowest serum PSA levels and the poorest prognosis after ADT. Combined analysis of PSA and Ki67 immunoreactivity (proliferation) in bone metastases, paired primary tumors, and TUR-P samples was able to differentiate MetA-like (high PSA, low Ki67) from MetB-like (low PSA, high Ki67) tumors and demonstrate their different prognosis. In conclusion, bone metastases from PC patients are separated based on gene expression profiles into molecular subtypes with different morphology, biology, and clinical outcome. These findings deserve further exploration with the purpose of improving treatment of metastatic PC.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2019. Vol. 13, nr 8, s. 1763-1777
Nyckelord [en]
bone metastasis, gene expression, gene set enrichment analysis, morphology, survival, unsupervised cluster analysis
Nationell ämneskategori
Cancer och onkologi
Identifikatorer
URN: urn:nbn:se:umu:diva-162668DOI: 10.1002/1878-0261.12526ISI: 000478600200009PubMedID: 31162796Scopus ID: 2-s2.0-85068158741OAI: oai:DiVA.org:umu-162668DiVA, id: diva2:1348763
Tillgänglig från: 2019-09-05 Skapad: 2019-09-05 Senast uppdaterad: 2023-03-24Bibliografiskt granskad
Ingår i avhandling
1. cancer subtype identification using cluster analysis on high-dimensional omics data
Öppna denna publikation i ny flik eller fönster >>cancer subtype identification using cluster analysis on high-dimensional omics data
2020 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Identification and prediction of cancer subtypes are important parts in the development towards personalized medicine. By tailoring treatments, it is possible to decrease unnecessary suffering and reduce costs. Since the introduction of next generation sequencing techniques, the amount of data available for medical research has increased rapidly. The high dimensional omics data produced by various techniques requires statistical methods to transform data into information and knowledge.

All papers in this thesis are related to distinguishing of disease subtypes in patients with cancer using omics data. The high dimension and the complexity of sequencing data from tumor samples makes it necessary to pre—process the data.  We carry out comparisons of feature selection methods and clustering methods used for identification of cancer subtypes. In addition, we evaluate the effect that certain characteristics of the data have on the ability to identify cancer subtypes. The results show that no method outperforms the others in all cases and the relative ranking of methods is very dependent on the data. We also show that the benefit of receiving a more homogeneous data by analyzing genders separately can outweigh the possible drawbacks caused by smaller sample sizes. One of the major challenges when dealing with omics data from tumor samples is that the patients are generally a very heterogeneous group. Factors that lead to heterogeneity include age, gender, ethnicity and stage of disease. How big the effect size is for each of these factors might affect the ability to identify the subgroups of interest.

In omics data, the feature space is often large and how many of the features that are informative for the factors of interest will also affect the complexity of the problem. We present a novel clustering approach that can identify different clusters in different subsets of the feature space, which is applied on methylation data to create new potential biomarkers. It is shown that by combining clinical data with methylation data for patients with clear cell renal carcinoma, it is possible to improve the currently used prediction model for disease progression.  

Using unsupervised clustering techniques, we identify three molecular subtypes of prostate cancer bone metastases based on gene expression profiles. The robustness of the identified subtypes is confirmed by applying several clustering algorithms with very similar results.

 

Ort, förlag, år, upplaga, sidor
Umeå: Umeå universitet, 2020. s. 22
Serie
Research report in mathematical statistics, ISSN 1653-0829 ; 70/20
Nyckelord
cluster analysis, cancer, classification
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
urn:nbn:se:umu:diva-167275 (URN)978-91-7855-172-9 (ISBN)978-91-7855-173-6 (ISBN)
Disputation
2020-02-07, N460, Naturvetarhuset, Umeå, 09:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2020-01-17 Skapad: 2020-01-14 Senast uppdaterad: 2021-10-19Bibliografiskt granskad

Open Access i DiVA

fulltext(2287 kB)345 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2287 kBChecksumma SHA-512
d1f2014331f65d4e75ec7f71e7227fc2b8eb57b54e26b2edbd951f2d47be3e4a5973e2cd17eaa9c15ba87ddf663270be4598297b1202ae77af972aef9869b867
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Thysell, ElinVidman, LindaBovinder Ylitalo, ErikJernberg, EmmaCrnalic, SeadWidmark, AndersRydén, PatrikBergh, AndersWikström, Pernilla

Sök vidare i DiVA

Av författaren/redaktören
Thysell, ElinVidman, LindaBovinder Ylitalo, ErikJernberg, EmmaCrnalic, SeadStattin, PärWidmark, AndersRydén, PatrikBergh, AndersWikström, Pernilla
Av organisationen
PatologiInstitutionen för matematik och matematisk statistikOrtopediUrologi och andrologiOnkologi
I samma tidskrift
Molecular Oncology
Cancer och onkologi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 345 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 794 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf