Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Synthesis and Immunological Evaluation of Disaccharide Bearing MUC-1 Glycopeptide Conjugates with Virus-like Particles
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Leibniz-Institut für Analytische Wissenschaften ISAS e.V., Dortmund, Germany.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: ACS Chemical Biology, ISSN 1554-8929, E-ISSN 1554-8937, Vol. 14, nr 10, s. 2176-2184Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Mucin-1 (MUC1) is a highly attractive antigenic target for anticancer vaccines. Naturally existing MUC1 can contain multiple types of O-linked glycans, including the Thomsen–Friedenreich (Tf) antigen and the Sialyl Thomsen-nouveau (STn) antigen. In order to target these antigens as potential anticancer vaccines, MUC1 glycopeptides SAPDT*RPAP (T* is the glycosylation site) bearing the Tf and the STn antigen, respectively, have been synthesized. The bacteriophage Qβ carrier is a powerful carrier for antigen delivery. The conjugates of MUC1-Tf and -STn glycopeptides with Qβ were utilized to immunize immune-tolerant human MUC1 transgenic (MUC1.Tg) mice, which elicited superior levels of anti-MUC1 IgG antibodies with titers reaching over 2 million units. The IgG antibodies recognized a wide range of MUC1 glycopeptides bearing diverse glycans. Antibodies induced by Qβ-MUC1-Tf showed strongest binding, with MUC1-expressing melanoma B16-MUC1 cells, and effectively killed these cells in vitro. Vaccination with Qβ-MUC1-Tf first followed by tumor challenge in a lung metastasis model showed significant reductions of the number of tumor foci in the lungs of immunized mice as compared to those in control mice. This was the first time that a MUC1-Tf-based vaccine has shown in vivo efficacy in a tumor model. As such, Qβ-MUC1 glycopeptide conjugates have great potential as anticancer vaccines.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2019. Vol. 14, nr 10, s. 2176-2184
Nationell ämneskategori
Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci)
Identifikatorer
URN: urn:nbn:se:umu:diva-165120DOI: 10.1021/acschembio.9b00381ISI: 000492118500010PubMedID: 31498587Scopus ID: 2-s2.0-85073024998OAI: oai:DiVA.org:umu-165120DiVA, id: diva2:1369351
Tillgänglig från: 2019-11-11 Skapad: 2019-11-11 Senast uppdaterad: 2023-03-24Bibliografiskt granskad
Ingår i avhandling
1. Development and Evaluation of Tools to Explore Posttranslational HexNAc-Tyrosine and Mucin-Type O-Glycosylation
Öppna denna publikation i ny flik eller fönster >>Development and Evaluation of Tools to Explore Posttranslational HexNAc-Tyrosine and Mucin-Type O-Glycosylation
2021 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Glycosylation is the most abundant form of post-translational modification (PTM). Recently, O-glycosylation attracted much attention in the glycoproteomic field due to its association with various diseases, such as pathogenic infections and cancer. However, glycoproteomic analysis of O-linked glycosylation is highly challenging due its structural diversity and complexity. New and efficient methods need to be developed to obtain a better understanding of the biological functions of O-glycans. In the presented thesis, glycopeptide microarrays were used as tools to explore the role of mucin type O-glycosylation in cancer, bacterial adhesion processes and galectin recognition on a molecular level, and to get insights into a new group of tyrosine O-glycosylation. A better understanding of these carbohydrate-protein interactions on a molecular level could facilitate the development of glycomimetic inhibitors to fight bacterial infections or block glycan binding proteins involved in cancer progression, or improve the design of novel carbohydrate-based cancer vaccines.

In the first part of this work, tools were developed to elucidate the role of a novel group of PTMs, where N-acetylhexosamine (HexNAc = α-GalNAc, α- or β-GlcNAc) was found to modify the hydroxyl group of tyrosine. Synthetic glycopeptides carrying this new modification, as well as glycopeptide microarray libraries were prepared to evaluate the abilities of plant lectins (carbohydrate-binding proteins) to detect HexNAc-O-Tyr modifications. These lectins are commonly used in glycoproteomic work flows to detect and enrich glycopeptides and -proteins. Additionally, HexNAc-O-Tyr-specific rabbit antibodies were raised and immunologically analyzed by enzyme-linked immunosorbent assays, western blot and microarray binding studies.

In the second part of the presented thesis, synthetic mucin glycopeptide microarray libraries were prepared and employed to explore carbohydrate-protein interactions of galectins, bacterial lectins and tumor specific antibodies. Mucin glycoproteins are part of the mucus barrier that protects the host against invading pathogens. However, bacteria and viruses have co-evolved with the human host and have developed strategies to promote virulence, for example by adhering to glycans on the host cell-surface. To combat bacterial infections, their virulence and pathogenicity must be understood on a molecular level. In this work, mucin glycopeptides were enzymatically modified with different fucose motifs and used to determine the fine binding specificities of fucose-recognizing lectins LecB from Pseudomonas aeruginosa and the Clostridium difficile toxin A. Furthermore, a synthesis strategy was developed to generate simplified mucin core glycopeptides that could be used as scaffolds to enzymatically generate LacdiNAc modified glycopeptides. They could be used in microarray binding studies to evaluate the glycan binding preferences of various proteins, including the Helicobacter pylori lectin LabA and human galectins, which play roles in cancer development and progression. Aberrant glycosylation of mucin glycoproteins has been associated with various types of cancer. Tumor specific carbohydrate antigens on mucins represent attractive antigenic targets for the development of effective anti-cancer vaccines. In this work, antibodies induced by tumor-associated MUC1 glycopeptide-bacteriophage Qβ vaccine conjugates were immunologically analyzed using MUC1 glycopeptide microarray libraries.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2021. s. 171
Nyckelord
Glycopeptides, mucins, mucin type-O-glycosylation, microarrays, tyrosine-O-HexNAcylation, lectins, MUC1 cancer vaccines, TcdA, LecB, galectins, LacdiNAc, antibodies
Nationell ämneskategori
Organisk kemi
Forskningsämne
biologisk kemi; bioorganisk kemi; organisk kemi
Identifikatorer
urn:nbn:se:umu:diva-187282 (URN)978-91-7855-646-5 (ISBN)978-91-7855-647-2 (ISBN)
Disputation
2021-10-01, Glasburen, Kemiskt Biologiskt Centrum, Linnaeus väg 6, Umeå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2021-09-10 Skapad: 2021-09-07 Senast uppdaterad: 2021-09-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Pett, ChristianSchorlemer, ManuelBehren, SandraWesterlind, Ulrika

Sök vidare i DiVA

Av författaren/redaktören
Pett, ChristianSchorlemer, ManuelBehren, SandraWesterlind, Ulrika
Av organisationen
Kemiska institutionen
I samma tidskrift
ACS Chemical Biology
Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 448 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf