Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Assessment of the manganese cluster’s oxidation state via photoactivation of photosystem II microcrystals
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.ORCID-id: 0000-0002-5174-083X
Visa övriga samt affilieringar
2020 (Engelska)Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 117, nr 1, s. 141-145Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Knowledge of the manganese oxidation states of the oxygen-evolving Mn4CaO5 cluster in photosystem II (PSII) is crucial toward understanding the mechanism of biological water oxidation. There is a 4 decade long debate on this topic that historically originates from the observation of a multiline electron paramagnetic resonance (EPR) signal with effective total spin of S = 1/2 in the singly oxidized S2 state of this cluster. This signal implies an overall oxidation state of either Mn(III)3Mn(IV) or Mn(III)Mn(IV)3 for the S2 state. These 2 competing assignments are commonly known as “low oxidation (LO)” and “high oxidation (HO)” models of the Mn4CaO5 cluster. Recent advanced EPR and Mn K-edge X-ray spectroscopy studies converge upon the HO model. However, doubts about these assignments have been voiced, fueled especially by studies counting the number of flash-driven electron removals required for the assembly of an active Mn4CaO5 cluster starting from Mn(II) and Mn-free PSII. This process, known as photoactivation, appeared to support the LO model since the first oxygen is reported to evolve already after 7 flashes. In this study, we improved the quantum yield and sensitivity of the photoactivation experiment by employing PSII microcrystals that retained all protein subunits after complete manganese removal and by oxygen detection via a custom built thin-layer cell connected to a membrane inlet mass spectrometer. We demonstrate that 9 flashes by a nanosecond laser are required for the production of the first oxygen, which proves that the HO model provides the correct description of the Mn4CaO5 cluster’s oxidation states.

Ort, förlag, år, upplaga, sidor
Proceedings of the National Academy of Sciences , 2020. Vol. 117, nr 1, s. 141-145
Nyckelord [en]
photosynthesis, oxygen evolving cluster, photoassembly, manganese oxidation state, mechanism of water oxidation
Nationell ämneskategori
Fysikalisk kemi
Forskningsämne
biologisk kemi; fysikalisk kemi
Identifikatorer
URN: urn:nbn:se:umu:diva-167235DOI: 10.1073/pnas.1915879117ISI: 000506001200027Scopus ID: 2-s2.0-85077660318OAI: oai:DiVA.org:umu-167235DiVA, id: diva2:1385163
Tillgänglig från: 2020-01-13 Skapad: 2020-01-13 Senast uppdaterad: 2023-03-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Shevela, DmitriyMessinger, Johannes

Sök vidare i DiVA

Av författaren/redaktören
Shevela, DmitriyMessinger, Johannes
Av organisationen
Kemiska institutionen
I samma tidskrift
Proceedings of the National Academy of Sciences of the United States of America
Fysikalisk kemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 377 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf