Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Large-scale modelling and forecasting of ambulance calls in northern Sweden using spatio-temporal log-Gaussian Cox processes
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
2020 (Engelska)Ingår i: Spatial Statistics, E-ISSN 2211-6753, Vol. 39, artikel-id 100471Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In order to optimally utilise the resources of a country’s prehospital care system, i.e. ambulance service(s),it is crucial that one is able to spatio-temporally forecast hot-spots, i.e. spatial regions and periods with anincreased risk of seeing a call to the emergency number 112 which results in the dispatch of an ambulance.Such forecasts allow the dispatcher to make strategic decisions regarding e.g. the fleet size and where todirect unoccupied ambulances. In addition, simulations based on forecasts may serve as the startingpoint for different optimal routing strategies. Although the associated data typically comes in the form ofspatio-temporal point patterns, point process based modelling attempts in the literature has been scarce.In this paper, we study a unique set of Swedish spatio-temporal ambulance call data, which consists ofthe spatial (gps) locations of the dispatch addresses and the associated days of occurrence of the calls.The spatial study region is given by the four northernmost regions of Sweden and the study period isJanuary 1, 2014 to December 31, 2018. Motivated by the non-infectious disease nature of the data, wehere employ log-Gaussian Cox processes (LGCPs) for the spatio-temporal modelling and forecasting ofthe calls. To this end, we propose a K-means based bandwidth selection method for the kernel estimationof the spatial component of the separable spatio-temporal intensity function. The temporal componentof the intensity function is modelled by means of Poisson regression, using different calendar covariates,and the spatio-temporal random field component of the random intensity of the LGCP is fitted usingsimulation via the Metropolis-adjusted Langevin algorithm. A study of the spatio-temporal dynamics ofthe data shows that a hot-spot can be found in the south eastern part of the study region, where mostpeople in the region live and our fitted model/forecasts manage to capture this behaviour quite well. Thefitted temporal component of the intensity functions reveals that there is a significant association betweenthe expected number of calls and the day of the week as well as the season of the year. In addition,non-parametric second-order spatio-temporal summary statistic estimates indicate that LGCPs seem tobe reasonable models for the data. Finally, we find that the fitted forecasts generate simulated futurespatial event patterns which quite well resemble the actual future data.

Ort, förlag, år, upplaga, sidor
Elsevier, 2020. Vol. 39, artikel-id 100471
Nyckelord [en]
Ambulance call data, Forecasting/prediction, K-means clustering based bandwidth selection, Metropolis-adjusted Langevin Markov chain Monte Carlo, Minimum contrast estimation, Spatio-temporal point process modelling
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:umu:diva-169719DOI: 10.1016/j.spasta.2020.100471ISI: 000580942000004Scopus ID: 2-s2.0-85091965093OAI: oai:DiVA.org:umu-169719DiVA, id: diva2:1424603
Tillgänglig från: 2020-04-17 Skapad: 2020-04-17 Senast uppdaterad: 2024-04-05Bibliografiskt granskad

Open Access i DiVA

fulltext(7801 kB)424 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 7801 kBChecksumma SHA-512
5d301544accbd6fdd5743179ec343fd60c866a674fe083b24424710cd1efda612afe10ae72977d748b80b66739b76d5ae4bf2d2c46dcd3e77ce2d30272e684a9
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Bayisa, FekaduÅdahl, MarkusRydén, PatrikCronie, Ottmar

Sök vidare i DiVA

Av författaren/redaktören
Bayisa, FekaduÅdahl, MarkusRydén, PatrikCronie, Ottmar
Av organisationen
Institutionen för matematik och matematisk statistik
I samma tidskrift
Spatial Statistics
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 424 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 752 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf