Fluorine is of increasing concern in waste combustion since fluorinated plastics constitute anincreasing share of waste fractions entering CHP plants. Alkali fluorides could potentially causesimilar problems as are well known for the corresponding chlorides. However, there are somefundamental differences in thermodynamic stabilities. Available literature essentially lacks theexperimental evidence needed to draw any further conclusions on the extent of any fluorine relatedproblems, but recently a MSW fired CHP reported alarming deposit growth rates, possibly relatedto a delivery of fluorine containing fuels. The objective of the present study was to experimentallyevaluate some of the thermodynamic considerations mentioned. Fuels were prepared by addingNaCl, NaF and S to softwood pellets. Deposit and aerosol samples were analyzed with SEM-EDSand XRD, and evaluated together with fundamental thermodynamic phase equilibriumconsiderations to provide new and important information on the ash forming reactions and theirimplications. The results from the combustion tests showed that the fluorine found on the depositprobe was in form of NaF and Na3F (SO4) in qualitative agreement with thermodynamicequilibrium calculations.