Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Comprehensive Study of Complexity and Performance of Automatic Detection of Atrial Fibrillation: Classification of Long ECG Recordings Based on the PhysioNet Computing in Cardiology Challenge 2017
Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.ORCID-id: 0000-0002-1313-0934
2020 (Engelska)Ingår i: Biomedical Engineering & Physics Express, E-ISSN 2057-1976, Vol. 6, nr 2, artikel-id 025010Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Objective: The 2017 PhysioNet/CinC Challenge focused on automatic classification of atrial fibrillation (AF) in short ECGs. This study aimed to evaluate the use of the data and results from the challenge for detection of AF in longer ECGs, taken from three other PhysioNet datasets.

Approach: The used data-driven models were based on features extracted from ECG recordings, calculated according to three solutions from the challenge. A Random Forest classifier was trained with the data from the challenge. The performance was evaluated on all non-overlapping 30 s segments in all recordings from three MIT-BIH datasets. Fifty-six models were trained using different feature sets, both before and after applying three feature reduction techniques.

Main Results: Based on rhythm annotations, the AF proportion was 0.00 in the MIT-BIH Normal Sinus Rhythm (N = 46083 segments), 0.10 in the MIT-BIH Arrhythmia (N = 2880), and 0.41 in the MIT-BIH Atrial Fibrillation (N = 28104) dataset. For the best performing model, the corresponding detected proportions of AF were 0.00, 0.11 and 0.36 using all features, and 0.01, 0.10 and 0.38 when using the 15 best performing features.

Significance: The results obtained on the MIT-BIH datasets indicate that the training data and solutions from the 2017 Physionet/Cinc Challenge can be useful tools for developing robust AF detectors also in longer ECG recordings, even when using a low number of carefully selected features. The use of feature selection allows significantly reducing the number of features while preserving the classification performance, which can be important when building low-complexity AF classifiers on ECG devices with constrained computational and energy resources.

Ort, förlag, år, upplaga, sidor
Institute of Physics Publishing (IOPP), 2020. Vol. 6, nr 2, artikel-id 025010
Nyckelord [en]
atrial fibrillation detection, computational complexity, feature selection, 2017 PhysioNet/CinC Challenge
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-174283DOI: 10.1088/2057-1976/ab6e1eISI: 000525707800001Scopus ID: 2-s2.0-85081976560OAI: oai:DiVA.org:umu-174283DiVA, id: diva2:1459723
Tillgänglig från: 2020-08-20 Skapad: 2020-08-20 Senast uppdaterad: 2023-03-24Bibliografiskt granskad

Open Access i DiVA

fulltext(3479 kB)239 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3479 kBChecksumma SHA-512
7a662c8d007dcf2159d189cc66ef28a175602e0469157275e3df8337b3630ce097a630f7b9f4750ebbb272200618006499f5c25947e02ebdce5457cbb02bce8d
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Wiklund, Urban

Sök vidare i DiVA

Av författaren/redaktören
Kleyko, DenisOsipov, EvgenyWiklund, Urban
Av organisationen
Radiofysik
I samma tidskrift
Biomedical Engineering & Physics Express
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 239 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 253 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf