Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Numerical modeling of the fracture process in a three-unit all-ceramic fixed partial denture
Umeå universitet, Medicinska fakulteten, Institutionen för odontologi, Odontologisk materialvetenskap. Umeå universitet, Medicinska fakulteten, Institutionen för odontologi.
Department of Civil and Mining Engineering, Luleå University of Technology, Luleå, Sweden.
Department of Civil and Mining Engineering, Luleå University of Technology, Luleå, Sweden.
Umeå universitet, Medicinska fakulteten, Institutionen för odontologi, Odontologisk materialvetenskap.
2007 (Engelska)Ingår i: Dental Materials, ISSN 0109-5641, E-ISSN 1879-0097, Vol. 23, nr 8, s. 1042-1049Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

OBJECTIVES: The main objectives were to examine the fracture mechanism and process of a ceramic fixed partial denture (FPD) framework under simulated mechanical loading using a recently developed numerical modeling code, the R-T(2D) code, and also to evaluate the suitability of R-T(2D) code as a tool for this purpose. METHODS: Using the recently developed R-T(2D) code the fracture mechanism and process of a 3U yttria-tetragonal zirconia polycrystal ceramic (Y-TZP) FPD framework was simulated under static loading. In addition, the fracture pattern obtained using the numerical simulation was compared with the fracture pattern obtained in a previous laboratory test. RESULTS: The result revealed that the framework fracture pattern obtained using the numerical simulation agreed with that observed in a previous laboratory test. Quasi-photoelastic stress fringe pattern and acoustic emission showed that the fracture mechanism was tensile failure and that the crack started at the lower boundary of the framework. The fracture process could be followed both in step-by-step and step-in-step. SIGNIFICANCE: Based on the findings in the current study, the R-T(2D) code seems suitable for use as a complement to other tests and clinical observations in studying stress distribution, fracture mechanism and fracture processes in ceramic FPD frameworks.

Ort, förlag, år, upplaga, sidor
2007. Vol. 23, nr 8, s. 1042-1049
Nyckelord [en]
Numerical modeling; Dental ceramic; Fracture; Zirconia; Fixed partial denture
Nationell ämneskategori
Biomaterialvetenskap
Identifikatorer
URN: urn:nbn:se:umu:diva-6508DOI: 10.1016/j.dental.2006.06.039PubMedID: 17109952Scopus ID: 2-s2.0-34250222382OAI: oai:DiVA.org:umu-6508DiVA, id: diva2:146177
Tillgänglig från: 2008-02-26 Skapad: 2008-02-26 Senast uppdaterad: 2023-03-24Bibliografiskt granskad
Ingår i avhandling
1. On dental ceramics and their fracture: a laboratory and numerical study
Öppna denna publikation i ny flik eller fönster >>On dental ceramics and their fracture: a laboratory and numerical study
2010 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Background Surface treatments and irregularities in the surfaces may affect the fracture of ceramics. The effects of various treatments on the surface texture of different types of ceramic cores/substructures was therefore qualitatively, quantitatively and numerically evaluated. Since fractures in ceramics are not fully understood, the fracture behavior in dental ceramic core/substructures was also studied using both established laboratory methods and newly developed numerical methods.

Methods The surfaces of dental ceramic cores/substructures were studied qualitatively by means of a fluorescence penetrant method and scanning electron microscopy, quantitatively evaluated using a profilometer and also numerical simulation. In order to study fracture in zirconia-based fixed partial denture (FPD) frameworks, fractographic analysis in combination with fracture tests and newly developed two-dimensional (2D) and three-dimensional (3D) numerical modeling methods were used. In the numerical modeling methods, the heterogeneity within the materials was described by means of the Weibull distribution law. The Mohr–Coulomb failure criterion with tensile strength cut-off was used to judge whether the material was in an elastic or failed state.

Results Manual grinding/polishing could smooth the surfaces on some of the types of dental ceramic cores/substructures studied. Using the fluorescence penetrant method, no cracks/flaws apart from milling grooves could be seen on the surfaces of machined zirconia-based frameworks. Numerical simulations demonstrated that surface grooves affect the fracture of the ceramic bars and the deeper the groove, the sooner the bar fractured. In the laboratory tests the fracture mechanism in the FPD frameworks was identified as tensile failure and irregularities on the ceramic surfaces could act as fracture initiation sites. The numerical modeling codes allowed a better understanding of the fracture mechanism than the laboratory tests; the stress distribution and the fracture process could be reproduced using the mathematical methods of mechanics. Furthermore, a strong correlation was found between the numerical and the laboratory results.

Conclusion Based on the findings in the current thesis, smooth surfaces in areas of concentrated tensile stress would be preferable regarding the survival of ceramic restorations, however, the surfaces of only some of the ceramic cores/substructures could be significantly affected by manual polishing. The newly developed 3D method clearly showed the stress distribution and the fracture process in ceramic FPD frameworks, step by step, and seems to be an appropriate tool for use in the prediction of the fracture process in ceramic FPD frameworks.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå universitet, 2010. s. 53
Serie
Umeå University odontological dissertations, ISSN 0345-7532 ; 113
Nyckelord
Dental ceramics, Finite element analysis, Fixed partial denture, Fracture, Numerical modeling, Surface treatment
Nationell ämneskategori
Biomaterialvetenskap
Forskningsämne
odontologi
Identifikatorer
urn:nbn:se:umu:diva-36590 (URN)978-91-7459-037-1 (ISBN)
Disputation
2010-10-29, Sal 260, byggnad 3A, Norrlands universitetssjukhus, Umeå, 13:00 (Svenska)
Opponent
Handledare
Tillgänglig från: 2010-10-08 Skapad: 2010-10-05 Senast uppdaterad: 2018-06-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopushttp://linkinghub.elsevier.com/retrieve/pii/S0109-5641(06)00246-6

Person

Kou, WenSjögren, Göran

Sök vidare i DiVA

Av författaren/redaktören
Kou, WenSjögren, Göran
Av organisationen
Odontologisk materialvetenskapInstitutionen för odontologi
I samma tidskrift
Dental Materials
Biomaterialvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 572 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf