Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Differences in structure and hibernation mechanism highlight diversification of the microsporidian ribosome
Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).ORCID-id: 0000-0003-1312-5825
Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).ORCID-id: 0000-0001-6931-1526
Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).ORCID-id: 0000-0001-9518-4671
Visa övriga samt affilieringar
2020 (Engelska)Ingår i: PLoS biology, ISSN 1544-9173, E-ISSN 1545-7885, Vol. 18, nr 10, artikel-id e3000958Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Assembling and powering ribosomes are energy-intensive processes requiring fine-tuned cellular control mechanisms. In organisms operating under strict nutrient limitations, such as pathogenic microsporidia, conservation of energy via ribosomal hibernation and recycling is critical. The mechanisms by which hibernation is achieved in microsporidia, however, remain poorly understood. Here, we present the cryo-electron microscopy structure of the ribosome from Paranosema locustae spores, bound by the conserved eukaryotic hibernation and recycling factor Lso2. The microsporidian Lso2 homolog adopts a V-shaped conformation to bridge the mRNA decoding site and the large subunit tRNA binding sites, providing a reversible ribosome inactivation mechanism. Although microsporidian ribosomes are highly compacted, the P. locustae ribosome retains several rRNA segments absent in other microsporidia, and represents an intermediate state of rRNA reduction. In one case, the near complete reduction of an expansion segment has resulted in a single bound nucleotide, which may act as an architectural co-factor to stabilize a protein-protein interface. The presented structure highlights the reductive evolution in these emerging pathogens and sheds light on a conserved mechanism for eukaryotic ribosome hibernation.

Ort, förlag, år, upplaga, sidor
Public Library of Science , 2020. Vol. 18, nr 10, artikel-id e3000958
Nationell ämneskategori
Biokemi och molekylärbiologi
Identifikatorer
URN: urn:nbn:se:umu:diva-177178DOI: 10.1371/journal.pbio.3000958ISI: 000588113100002PubMedID: 33125369Scopus ID: 2-s2.0-85095862452OAI: oai:DiVA.org:umu-177178DiVA, id: diva2:1505592
Tillgänglig från: 2020-12-01 Skapad: 2020-12-01 Senast uppdaterad: 2024-01-12Bibliografiskt granskad
Ingår i avhandling
1. Nanoscopic adventures: unraveling macromolecular complexes in infectious diseases via integrative structural biology
Öppna denna publikation i ny flik eller fönster >>Nanoscopic adventures: unraveling macromolecular complexes in infectious diseases via integrative structural biology
2024 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Nanoskopiska äventyr : utforska makromolekylära komplex i infektionssjukdomar genom integrativ strukturbiologi
Abstract [en]

This thesis focuses on understanding the underlying molecular mechanisms of infectious diseases, which claim nearly 9 million lives annually. The research centers on critical analysis of pathogen mechanisms and drug resistance. I have mainly focused on two clades of pathogens: Enterococcus faecalis and microsporidia. E. faecalis is a key nosocomial opportunistic pathogen, and microsporidia are a group of emerging fungal pathogens that considerably impact the environment and economy, causing, among other things, the decline of honeybee populations. In this thesis, I have combined biochemistry and cryo-electron microscopy to perform an in-depth molecular analysis of crucial protein complexes that drive the infectivity of these organisms. In E. faecalis, the primary drug efflux pump, EfrCD, is examined to gain insight into its role in antibiotic resistance. 

Microsporidia often have a drastically reduced genome and display altered macromolecular structures due to their parasitic lifestyle. The research aims to provide insights into the regulation of translational processes in microsporidia by comparing the dormant spore stage to the active intracellular stage and looking closely into the infection mechanism. 

In the publication “Deep mutational scan of a drug efflux pump reveals its structure– function landscape,” I determined the structure of EfrCD and several of its conformations to understand better how this protein complex contributes to E. faecalis' multidrug resistance. In further research, our focus moved to Microsporidia. 

During our work on the “Structure of the reduced microsporidian proteasome bound by PI31-like peptides in dormant spores” and “Differences in structure and hibernation mechanism highlight diversification of the microsporidian ribosome,” we solved the structure of the endogenous microsporidian ribosome as well as multiple versions of the proteasome; the dormant form of 20S proteasome and the active form of the 20S and 26S proteasome. This gave a deeper understanding of how microsporidia could highly reduce those conserved macromolecular complexes. By discovering novel inhibitors, we were also able to understand how those energy- demanding molecular machines can efficiently regulate themselves. 

Furthermore, we investigated the specialized infection organ of microsporidia, known as the polar tube. As part of the paper titled "Ribosome clustering and surface layer reorganization in the microsporidian host-invasion apparatus," I contributed by performing proteomic analysis of the endogenously affinity-purified polar tubes using a native affinity tag I discovered. Additionally, I identified potential protein-protein interactions of the polar tube proteins. This complemented the work performed on the dynamics and ultrastructure remodeling of the polar tube during germination through light microscopy and cryo-electron tomography. We observed a cargo-filled state with organized arrays of ribosomes clustered along the thin tube wall and an empty post-translocation state with a thicker wall. 

The findings of this thesis work expand our understanding of pathogen biology and open up new possibilities for addressing drug development and drug resistance, a significant global health challenge. 

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2024. s. 56
Serie
Umeå University medical dissertations, ISSN 0346-6612
Nyckelord
Infectious diseases, E. faecalis, Microsporidia, Ribosome, Proteasome, Polar Tube, Structural Biology, Single particle Cryo-Electron Microscopy
Nationell ämneskategori
Strukturbiologi
Identifikatorer
urn:nbn:se:umu:diva-219119 (URN)9789180702553 (ISBN)9789180702560 (ISBN)
Disputation
2024-02-02, Aula Anatomica (BIO.A.206), Umeå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2024-01-12 Skapad: 2024-01-08 Senast uppdaterad: 2024-01-09Bibliografiskt granskad

Open Access i DiVA

fulltext(3514 kB)363 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3514 kBChecksumma SHA-512
7e0788f8b0f49101ce67a44036b2ae4ed459db802c5787a065dc121a94df456dfafcecf17544abd969a4b323e09dfabbc41c465ce72723fc73561c70f68fdbb1
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Ehrenbolger, KaiJespersen, NathanSharma, HimanshuBarandun, Jonas

Sök vidare i DiVA

Av författaren/redaktören
Ehrenbolger, KaiJespersen, NathanSharma, HimanshuSokolova, Yuliya Y.Tokarev, Yuri S.Barandun, Jonas
Av organisationen
Institutionen för molekylärbiologi (Medicinska fakulteten)Molekylär Infektionsmedicin, Sverige (MIMS)Umeå Centre for Microbial Research (UCMR)
I samma tidskrift
PLoS biology
Biokemi och molekylärbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 363 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 631 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf