Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
In Situ Assembly of Choline Acetyltransferase Ligands by a Hydrothiolation Reaction Reveals Key Determinants for Inhibitor Design
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Show others and affiliations
2021 (English)In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 60, no 2, p. 813-819Article in journal (Refereed) Published
Abstract [en]

The potential drug target choline acetyltransferase (ChAT) catalyses the production of the neurotransmitter acetylcholine in cholinergic neurons, T-cells, and B-cells. Herein, we show that arylvinylpyridiniums (AVPs), the most widely studied class of ChAT inhibitors, act as substrate in an unusual coenzyme A-dependent hydrothiolation reaction. This in situ synthesis yields an adduct that is the actual enzyme inhibitor. The adduct is deeply buried in the active site tunnel of ChAT and interactions with a hydrophobic pocket near the choline binding site have major implications for the molecular recognition of inhibitors. Our findings clarify the inhibition mechanism of AVPs, establish a drug modality that exploits a target-catalysed reaction between exogenous and endogenous precursors, and provide new directions for the development of ChAT inhibitors with improved potency and bioactivity.

Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2021. Vol. 60, no 2, p. 813-819
Keywords [en]
choline acetyltransferase, coenzyme A, drug discovery, hydrothiolation, in situ assembly
National Category
Organic Chemistry
Identifiers
URN: urn:nbn:se:umu:diva-177255DOI: 10.1002/anie.202011989ISI: 000590562300001PubMedID: 33079431Scopus ID: 2-s2.0-85097185291OAI: oai:DiVA.org:umu-177255DiVA, id: diva2:1507127
Available from: 2020-12-07 Created: 2020-12-07 Last updated: 2025-05-19Bibliographically approved
In thesis
1. Chemistry for a safer world: towards a better understanding of bioactive compounds against nerve agent intoxication through chemical and computational tools
Open this publication in new window or tab >>Chemistry for a safer world: towards a better understanding of bioactive compounds against nerve agent intoxication through chemical and computational tools
2025 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The use of prohibited chemical weapons, particularly the so-called nerve agents, is still a horrifying reality. Chemical weapons have still been used in many parts of the world in recent years, revealing the shortcomings of available drug treatments for the exposure to nerve agents.

Nerve agents inhibit the enzyme acetylcholinesterase (AChE), a key player in neuronal signalling. Since the discovery of antidotes, so-called reactivators like HI-6 and symptomatic drugs like atropine, the development of new bioactive molecules against nerve agent intoxication has been slow due to a lack of understanding of the molecular properties that guide their efficacy. This thesis aims to better understand the mechanisms that guide the efficacy of both reactivators and symptomatic drugs against nerve agent intoxication.

The complexity of the inhibited AChE system, which consists of the enzyme, a nerve agent, and the bioactive reactivator, has hindered the systematic investigation of reactivators. We therefore do not only aim to develop new reactivators, but primarily understand which molecular properties determine reactivation efficacy. We focus on establishing ligands that bind to AChE independently of an inhibited nerve agent and transform one such ligand into a reactivator. A library of analogue reactivators systematically investigates both the reactive oxime functionality and the ligand moiety that binds at the entrance of AChE’s active site with a focus on their structure-activity relationships. We showed that even minor structural changes can have a large impact on the activity of reactivators against various nerve agents.

In the area of symptomatic drugs, we identified the enzyme choline acetyltransferase (ChAT) as an interesting drug target. A long-established class of inhibitors of ChAT showed a confusing structure-activity relationship. We found that their inhibition properties could be explained by a chemical reaction inside ChAT (in situ) with a cofactor to build the actual inhibiting molecule. This understanding is now paving the way for a new generation of ChAT inhibitors.

In conclusion, this thesis aims to aid the understanding of AChE reactivators and ChAT inhibitors to help eliminate the threat of nerve agents to human lives. This work also highlights the importance of understanding interaction mechanisms between bioactive molecules and their biological targets to facilitate the discovery of new drugs and drug targets.

Abstract [sv]

Förbjudna kemiska vapen, särskilt så-kallade nervgaser, används fortfarande till fruktansvärda konsekvenser. Konflikter över världen har visat att hotet från kemiska vapen är aktuellt och kräver nya, förbättrade botemedel.

Nervgaserna inhiberar enzymet acetylkolinesteras (AChE) som är ytterst viktigt för signalflödet i våra neuroner. Även fast det finns botemedel i dag, så kallade reaktivatorer som HI6 såsom symptomatiska läkemedel som atropin, har utvecklingen i fältet gått långsamt. Det största problemet är en saknande förståelse av de molekylära egenskaperna som styr botemedlens effektivitet mot nervgasförgiftning. Denna avhandling syftar åt en bättre kunskap kring molekylära mekanismer som påverkar effektiviteten av nya botemedel och symptomatiska läkemedel mot nervgasförgiftning.

Det inhiberade AChE systemet som består av AChE, nervgas och reaktivator, är ytterst komplex och har försvårat utvecklingen av nya antidoter. Därför utvecklar vi inte endast nya reaktivatorer, utan syftar åt en bättre kunskap kring molekylära egenskaper som styr botemedlets effektivitet. Vi hittade nya ligander som binder till AChE oberoende av en nervgas och modifierade en sådan ligand till en reaktivator. Vi har sedan designat ett bibliotek av olika reaktivatorer som systematiskt undersöker reaktivatorens oximgrupp och liganddelen som bindar till ingången av AChEs aktiva ficka. Här fokuserade vi på molekylernas strukturaktivitetssamband. Vi visade att även små strukturella förändringar i molekylen medför stora förändringar i reaktivatorens effektivitet mot olika nervgaser.

När det gäller symptomatiska läkemdel mot nervgasförgiftning verkade vi för att identifiera enzymet kolinacetyltransferas (ChAT) som ett lämpligt målprotein. Det har funnits en rad hämmare för ChAT, dock har deras strukturaktivitetssamband varit oklart. Det visade sig att hämmarnas inhiberingsförmågan kan förklaras genom en kemisk reaktion med en kofaktor som sker inuti ChAT (in situ) och som bildar den faktiska aktiva hämmaren. Denna upptäckt visar nu vägen åt en ny generation av nya, förbättrade ChAT hämmare.

Denna avhandling verkar för en djupare kunskap kring AChE reaktivatorer och ChAT hämmare så att hotet från kemiska vapen försvinner i framtiden. Dessutom ska avhandlingen belysa förståelsen av molekylära mekanismer för utvecklingen av bioaktiva molekyler för att kunna underlätta upptäckten av nya läkemedel och målprotein

Place, publisher, year, edition, pages
Umeå University, 2025. p. 54
National Category
Organic Chemistry
Identifiers
urn:nbn:se:umu:diva-238998 (URN)978-91-8070-693-3 (ISBN)978-91-8070-692-6 (ISBN)
Presentation
2025-06-05, Triple Helix, Universitetstorget 4, 90187 Umeå, 09:00 (English)
Supervisors
Available from: 2025-05-19 Created: 2025-05-19 Last updated: 2025-05-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Hoster, NormanHedenström, MattiasLinusson, Anna

Search in DiVA

By author/editor
Hoster, NormanLejon, ChristianHedenström, MattiasLinusson, Anna
By organisation
Department of Chemistry
In the same journal
Angewandte Chemie International Edition
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 677 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf