Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mode of action of Disinfection chemicals  on the bacterial spore structure and their Raman spectra
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
Show others and affiliations
2021 (English)In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 93, no 6, p. 3146-3153Article in journal (Refereed) Published
Abstract [en]

Contamination of toxic spore-forming bacteria is problematic since spores can survive a plethora of disinfection chemicals and it is hard to rapidly detect if the disinfection chemical has inactivated the spores. Thus, robust decontamination strategies and reliable detection methods to identify dead from viable spores are critical. In this work, we investigate the chemical changes of Bacillus thuringiensis spores treated with sporicidal agents such as chlorine dioxide, peracetic acid, and sodium hypochlorite using laser tweezers Raman spectroscopy. We also image treated spores using SEM and TEM to verify if we can correlate structural changes in the spores with changes to their Raman spectra. We found that over 30 min, chlorine dioxide did not change the Raman spectrum or the spore structure, peracetic acid showed a time-dependent decrease in the characteristic DNA/DPA peaks and ∼20% of the spores were degraded and collapsed, and spores treated with sodium hypochlorite showed an abrupt drop in DNA and DPA peaks within 20 min and some structural damage to the exosporium. Structural changes appeared in spores after 10 min, compared to the inactivation time of the spores, which is less than a minute. We conclude that vibrational spectroscopy provides powerful means to detect changes in spores but it might be problematic to identify if spores are live or dead after a decontamination procedure.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2021. Vol. 93, no 6, p. 3146-3153
National Category
Other Physics Topics Biophysics
Identifiers
URN: urn:nbn:se:umu:diva-179119DOI: 10.1021/acs.analchem.0c04519ISI: 000620922300011Scopus ID: 2-s2.0-85100614040OAI: oai:DiVA.org:umu-179119DiVA, id: diva2:1522320
Funder
Swedish Research Council, 2019-04016The Kempe Foundations, (JCK-1916.2Available from: 2021-01-26 Created: 2021-01-26 Last updated: 2023-09-05Bibliographically approved
In thesis
1. KNOW YOUR ENEMY: Characterizing Pathogenic Biomaterials Using Laser Tweezers
Open this publication in new window or tab >>KNOW YOUR ENEMY: Characterizing Pathogenic Biomaterials Using Laser Tweezers
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Diseases caused by pathogenic agents such as bacteria and viruses result in devastating costs on personal and societal levels. However, it is not just the emergence of new diseases that is problematic. Antibiotic resistance among bacteria makes uncomplicated infections difficult and lethal. Resilient disease-causing spores spread in hospitals, the food industry, and water supplies requiring effective detection and disinfection methods. Further, we face complex neurological diseases where no effective treatment or diagnostic methods exist. Thus, we must increase our fundamental understanding of these diseases to develop effective diagnostic, detection, disinfection, and treatment methods.

Classically, the methods used for detecting and studying the underlying mechanics of pathogenic agents work on a large scale, measuring the average macroscopic behavior and properties of these pathogens. However, just as with humans, the average behavior is not always representative of individual behavior. Therefore, it is also essential to investigate the characteristics of these pathogens on a single cell or particle level. 

This thesis develops and applies optical techniques to characterize pathogenic biomaterial on a single cell or particle level. At the heart of all these studies is our Optical Tweezers (OT) instrument. OT are a tool that allows us to reach into the microscopic world and interact with it. Finally, by combining OT with other experimental techniques, we can chemically characterize biomaterials and develop assays that mimic different biological settings. Using these tools, we investigate bacterial adhesion, disinfection, and detection of pathogenic spores and proteins.

Hopefully, the insights of these studies can lessen the burden on society caused by diseases by helping others develop effective treatment, diagnostic, detection, and disinfection methods in the future. 

Place, publisher, year, edition, pages
Umeå: Umeå universitet, 2022. p. 73
Keywords
Optical Tweezers, Laser Tweezers, Raman Spectroscopy, Bacterial Adhesion, Biophysics, Pili, Bacterial Spores, Endospores, Oocysts, Cryptosporidium, Optics
National Category
Biophysics Atom and Molecular Physics and Optics
Research subject
biology; Physics
Identifiers
urn:nbn:se:umu:diva-192471 (URN)978-91-7855-726-4 (ISBN)978-91-7855-727-1 (ISBN)
Public defence
2022-03-11, NAT.D.410, Naturvetarhuset, Umeå, 09:00 (English)
Opponent
Supervisors
Available from: 2022-02-18 Created: 2022-02-14 Last updated: 2022-02-15Bibliographically approved

Open Access in DiVA

fulltext(5914 kB)265 downloads
File information
File name FULLTEXT01.pdfFile size 5914 kBChecksum SHA-512
b51a9eea2ca6c75c3d887c1b21ad8a32919436ec413633591ff47f0df747146e895be786dedb4aadade96a2707bd6f501f5670077e3f5ce6cca946ff60708d49
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Malyshev, DmitryDahlberg, TobiasWiklund, KristerHenriksson, Sara

Search in DiVA

By author/editor
Malyshev, DmitryDahlberg, TobiasWiklund, KristerHenriksson, SaraAndersson, Magnus
By organisation
Department of PhysicsDepartment of Medical Biochemistry and BiophysicsDepartment of Molecular Biology (Faculty of Medicine)
In the same journal
Analytical Chemistry
Other Physics TopicsBiophysics

Search outside of DiVA

GoogleGoogle Scholar
Total: 265 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 733 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf