Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Phase transitions involving Ca - The most abundant ash forming element - In thermal treatment of lignocellulosic biomass
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 285, artikel-id 119054Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Torrefaction, pyrolysis and gasification are of interest to convert lignocellulosic biomass into fuels and chemicals. These techniques involve thermal treatment at low partial pressures of oxygen. However, little is known about the transformation of ash elements during these processes. The phase transition of the major ash element calcium (Ca) was therefore studied with powder from pine as biomass model treated at temperatures 300-800 degrees C under atmospheres of 100% N-2, 3% O-2 and 6% O-2 and thermodynamic equilibrium modelling. For evaluation, Xray powder diffraction and synchrotron Ca K-edge X-ray absorption near edge structure (XANES) spectroscopy in combination with linear combination fitting and reference compounds was used. The results indicated that the most abundant Ca-containing species in the untreated material was thermally unstable Ca oxalate (CaC2O4) primarily decomposing into Ca phases dominated by carbonates at temperatures up to 600 degrees C. Double carbonates of calcium and potassium were observed in the form of fairchildiite/butscheliite (K2Ca(CO3)(2)), and these phases were stable over the low temperature range studied. Hydroxyapatite (Ca-5(PO4)(3)OH) was expected to be present and thermally stable over the entire temperature interval and was found in untreated material. At temperatures above 600 degrees C calcium oxide (CaO) was formed. The amount of oxygen had little effect on the phase transitions. The results of thermodynamic modeling were in agreement with XANES showing that this is a versatile technique that can be applied to systems as complex as Ca phase transitions in thermally treated lignocellulosic biomass at low partial pressures of oxygen.

Ort, förlag, år, upplaga, sidor
Elsevier, 2021. Vol. 285, artikel-id 119054
Nyckelord [en]
Pyrolysis, Calcium phases, Equilibrium modelling, XANES, XRD
Nationell ämneskategori
Oorganisk kemi
Identifikatorer
URN: urn:nbn:se:umu:diva-179061DOI: 10.1016/j.fuel.2020.119054ISI: 000588132400026Scopus ID: 2-s2.0-85090129992OAI: oai:DiVA.org:umu-179061DiVA, id: diva2:1523740
Tillgänglig från: 2021-01-29 Skapad: 2021-01-29 Senast uppdaterad: 2023-03-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Backman, RainerBoström, Dan

Sök vidare i DiVA

Av författaren/redaktören
Thyrel, MikaelBackman, RainerBoström, Dan
Av organisationen
Institutionen för tillämpad fysik och elektronik
I samma tidskrift
Fuel
Oorganisk kemi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 268 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf