Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Temperature Stress Induces Shift From Co-Existence to Competition for Organic Carbon in Microalgae-Bacterial Photobioreactor Community: Enabling Continuous Production of Microalgal Biomass
Department of Biology and Environmental Science, Centre of Ecology and Evolution and Microbial Model Systems, Linnaeus University, Kalmar, Sweden.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap. Department of Marine Biology, Institut de Ciències del Mar, CSIC, Barcelona, Spain.ORCID-id: 0000-0001-9143-7061
Department of Biology and Environmental Science, Centre of Ecology and Evolution and Microbial Model Systems, Linnaeus University, Kalmar, Sweden.
Department of Biology and Environmental Science, Centre of Ecology and Evolution and Microbial Model Systems, Linnaeus University, Kalmar, Sweden.
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: Frontiers in Microbiology, E-ISSN 1664-302X, Vol. 12, artikel-id 607601Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

To better predict the consequences of environmental change on aquatic microbial ecosystems it is important to understand what enables community resilience. The mechanisms by which a microbial community maintain its overall function, for example, the cycling of carbon, when exposed to a stressor, can be explored by considering three concepts: biotic interactions, functional adaptations, and community structure. Interactions between species are traditionally considered as, e.g., mutualistic, parasitic, or neutral but are here broadly defined as either coexistence or competition, while functions relate to their metabolism (e.g., autotrophy or heterotrophy) and roles in ecosystem functioning (e.g., oxygen production, organic matter degradation). The term structure here align with species richness and diversity, where a more diverse community is though to exhibit a broader functional capacity than a less diverse community. These concepts have here been combined with ecological theories commonly used in resilience studies, i.e., adaptive cycles, panarchy, and cross-scale resilience, that describe how the status and behavior at one trophic level impact that of surrounding levels. This allows us to explore the resilience of a marine microbial community, cultivated in an outdoor photobioreactor, when exposed to a naturally occurring seasonal stress. The culture was monitored for 6weeks during which it was exposed to two different temperature regimes (21 ± 2 and 11 ± 1°C). Samples were taken for metatranscriptomic analysis, in order to assess the regulation of carbon uptake and utilization, and for amplicon (18S and 16S rRNA gene) sequencing, to characterize the community structure of both autotrophs (dominated by the green microalgae Mychonastes) and heterotrophs (associated bacterioplankton). Differential gene expression analyses suggested that community function at warm temperatures was based on concomitant utilization of inorganic and organic carbon assigned to autotrophs and heterotrophs, while at colder temperatures, the uptake of organic carbon was performed primarily by autotrophs. Upon the shift from high to low temperature, community interactions shifted from coexistence to competition for organic carbon. Network analysis indicated that the community structure showed opposite trends for autotrophs and heterotrophs in having either high or low diversity. Despite an abrupt change of temperature, the microbial community as a whole responded in a way that maintained the overall level of diversity and function within and across autotrophic and heterotrophic levels. This is in line with cross-scale resilience theory describing how ecosystems may balance functional overlaps within and functional redundancy between levels in order to be resilient to environmental change (such as temperature).

Ort, förlag, år, upplaga, sidor
Frontiers , 2021. Vol. 12, artikel-id 607601
Nyckelord [en]
adaptive cycles, bacteria, coexistence, community, competition, interactions, microalgae, resilience
Nationell ämneskategori
Mikrobiologi
Identifikatorer
URN: urn:nbn:se:umu:diva-181573DOI: 10.3389/fmicb.2021.607601ISI: 000621368600001Scopus ID: 2-s2.0-85101699588OAI: oai:DiVA.org:umu-181573DiVA, id: diva2:1538608
Tillgänglig från: 2021-03-19 Skapad: 2021-03-19 Senast uppdaterad: 2024-02-13Bibliografiskt granskad

Open Access i DiVA

fulltext(5104 kB)173 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 5104 kBChecksumma SHA-512
9bbdaf69e229e64c778cc617748526d5c68f9eee1a8e8db72babe17b96f1ec7dd631dd9ca77d400890b1814576a6f490944a7b2ae6c92adb7f560fe11ac8d597
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Capo, Eric

Sök vidare i DiVA

Av författaren/redaktören
Capo, Eric
Av organisationen
Institutionen för ekologi, miljö och geovetenskap
I samma tidskrift
Frontiers in Microbiology
Mikrobiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 173 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 166 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf