Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Fat-IntraBody Communication at 5.8 GHz: Verification of Dynamic Body Movement Effects using Computer Simulation and Experiments
Ångström Laboratory, Microwaves in Medical Engineering Group, Department of Electrical Engineering, Uppsala University, Uppsala, Sweden; Centre for Telecommunication Research and Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Durian Tunggal, Malaysia.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik. Department of Electronics and Electrical Communications, Menoufia University, Menouf, Egypt; Hannover Centre for Optical Technologies, Cluster of Excellence PhoenixD, Leibniz University Hannover, Hanover, Germany; Faculty of Mechanical Engineering, Institute of Transport and Automation Technology, Leibniz University Hannover, Garbsen, Germany.ORCID-id: 0000-0002-1318-7519
Ångström Laboratory, Microwaves in Medical Engineering Group, Department of Electrical Engineering, Uppsala University, Uppsala, Sweden.
Ångström Laboratory, Microwaves in Medical Engineering Group, Department of Electrical Engineering, Uppsala University, Uppsala, Sweden.
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: IEEE Access, E-ISSN 2169-3536, Vol. 9, s. 48429-48445Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper presents numerical modeling and experimental validation of the signal path loss at the 5.8 GHz Industrial, Scientific, and Medical (ISM) band, performed in the context of fat-intrabody communication (fat-IBC), a novel intrabody communication platform using the body-omnipresent fat tissue as the key wave-guiding medium. Such work extends our previous works at 2.0 and 2.4 GHz in the characterization of its performance in other useful frequency range. In addition, this paper also includes studies of both static and dynamic human body movements. In order to provide with a more comprehensive characterization of the communication performance at this frequency, this work focuses on investigating the path loss at different configurations of fat tissue thickness, antenna polarizations, and locations in the fat channel. We bring more realism to the experimental validation by using excised tissues from porcine cadaver as both their fat and muscle tissues have electromagnetic characteristics similar to those of human with respect to current state-of-art artificial phantom models. Moreover, for favorable signal excitation and reception in the fat-IBC model, we used topology optimized waveguide probes. These probes provide an almost flat response in the frequency range from 3.2 to 7.1 GHz which is higher than previous probes and improve the evaluation of the performance of the fat-IBC model. We also discuss various aspects of real-world scenarios by examining different models, particularly homogeneous multilayered skin, fat, and muscle tissue. To study the effect of dynamic body movements, we examine the impact of misalignment, both in space and in wave polarization, between implanted nodes. We show in particular that the use of fat-IBC techniques can be extended up in frequency to a broadband channel at 5.8 GHz.

Ort, förlag, år, upplaga, sidor
IEEE, 2021. Vol. 9, s. 48429-48445
Nyckelord [en]
Antennas, channel characterization, dielectric properties measurement, Dielectrics, ex-vivo, fat tissue, fat-IBC, Fats, intrabody microwave communication, ISM band, Muscles, path loss, Phantoms, polarization, Probes, Skin, topology optimization
Nationell ämneskategori
Telekommunikation
Identifikatorer
URN: urn:nbn:se:umu:diva-182157DOI: 10.1109/ACCESS.2021.3068400ISI: 000637183300001Scopus ID: 2-s2.0-85103303855OAI: oai:DiVA.org:umu-182157DiVA, id: diva2:1546668
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF), RIT17-0020EU, Horisont 2020, SINTEC-824984eSSENCE - An eScience CollaborationTillgänglig från: 2021-04-22 Skapad: 2021-04-22 Senast uppdaterad: 2021-07-02Bibliografiskt granskad

Open Access i DiVA

fulltext(6595 kB)263 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 6595 kBChecksumma SHA-512
a04955f1a67686e6150823d7514989d05c5b0956e1177057edb29efd83cda8300588afcac75114f0a205599410f0aa65acb46d17294ecdfa492bcbb64bfd3550
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Hassan, EmadeldeenBerggren, Martin

Sök vidare i DiVA

Av författaren/redaktören
Hassan, EmadeldeenBerggren, Martin
Av organisationen
Institutionen för tillämpad fysik och elektronikInstitutionen för datavetenskap
I samma tidskrift
IEEE Access
Telekommunikation

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 292 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 364 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf