Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
D-canavanine affects peptidoglycan structure, morphogenesis and fitness in Rhizobiales
Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
Division of Biological Sciences, University of Missouri, Columbia, MO, USA; Department of Biology and Environmental Science, Westminster College, Fulton, MO, USA.
Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).ORCID-id: 0000-0001-5995-718x
2021 (Engelska)Ingår i: Environmental Microbiology, ISSN 1462-2912, E-ISSN 1462-2920, Vol. 23, nr 10, s. 5823-5836Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The bacterial cell wall is made of peptidoglycan (PG), a polymer that is essential for maintenance of cell shape and survival. Many bacteria alter their PG chemistry as a strategy to adapt their cell wall to external challenges. Therefore, identifying these environmental cues is important to better understand the interplay between microbes and their habitat. Here we used the soil bacterium Pseudomonas putida to uncover cell wall modulators from plant extracts and found canavanine (CAN), a non-proteinogenic amino acid. We demonstrated that cell wall chemical editing by CAN is licensed by P. putida BSAR, a broad-spectrum racemase which catalyzes production of DL-CAN from L-CAN, which is produced by many legumes. Importantly, D-CAN diffuses to the extracellular milieu thereby having a potential impact on other organisms inhabiting the same niche. Our results show that D-CAN alters dramatically the PG structure of Rhizobiales (e.g. Agrobacterium tumefaciens, Sinorhizobium meliloti), impairing PG crosslinkage and cell division. Using A. tumefaciens we demonstrated that the detrimental effect of D-CAN is suppressed by a single amino acid substitution in the cell division PG transpeptidase penicillin binding protein 3a. Collectively, this work highlights the role of amino acid racemization in cell wall chemical editing and fitness.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2021. Vol. 23, nr 10, s. 5823-5836
Nationell ämneskategori
Mikrobiologi
Identifikatorer
URN: urn:nbn:se:umu:diva-182613DOI: 10.1111/1462-2920.15513ISI: 000646695400001PubMedID: 33830599Scopus ID: 2-s2.0-85104330743OAI: oai:DiVA.org:umu-182613DiVA, id: diva2:1547579
Forskningsfinansiär
VetenskapsrådetKnut och Alice Wallenbergs StiftelseKempestiftelserna
Anmärkning

Special Issue

Tillgänglig från: 2021-04-27 Skapad: 2021-04-27 Senast uppdaterad: 2023-03-24Bibliografiskt granskad
Ingår i avhandling
1. Molecular mechanisms and biological consequences of the production of non-canonical D-amino acids in bacteria
Öppna denna publikation i ny flik eller fönster >>Molecular mechanisms and biological consequences of the production of non-canonical D-amino acids in bacteria
2021 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Most bacteria possess a vital net-like macromolecule – peptidoglycan (PG). PG encases bacteria around the cytoplasmic membrane to withstand the high internal turgor pressure and thereby protect the cell from bursting. In addition, PG is a major morphological determinant of bacteria being both required and sufficient to maintain cell shape. During cell growth PG hydrolysis and synthesis are tightly controlled to keep proper cell shape and integrity at all times. Given the essentiality of PG for bacterial growth and survival, the synthesis of this polymer is a major target of many natural and synthetic antibiotics (e.g. penicillins, glycopeptides).

For a long time, PG composition was considered to be conserved and static, however it’s now being recognized as a dynamic and plastic macromolecule. The structure and chemistry of PG is influenced by a myriad of environmental cues that include interkingdom/interspecies interactions. Recently, it was found that a wide set of non-canonical D-amino acids (D-amino acids different from D-Ala and D-Glu, NCDAAs) are produced and released to the extracellular milieu by diverse bacteria. In Vibrio cholerae these NCDAAs are produced by broad-spectrum racemase enzyme (BsrV) and negatively regulate PG synthesis through their incorporation into PG. We have shown that in addition to D-Met and D-Leu, which were reported previously, V. cholerae also releases high amounts of D-Arg, which inhibits a broader range of phylogenetically diverse bacteria. Thus, NCDAAs affect not only the producer, but might target other species within the same environmental niche. However, in contrast to D-Met, D-Arg targets cell wall independent pathways. 

We have shown that non-proteinogenic amino acids also can be racemized by Bsr. A plant amino acid L-canavanine (L-CAN) is converted into D-CAN by a broad-spectrum amino acid racemase (BSAR) of the soil bacterium Pseudomonas putida and subsequently released to the environment. D-CAN gets highly incorporated into the PG of Rhizobiales (such as Agrobacterium tumefaciens, Sinorhizobium meliloti) thereby affecting the overall PG structure, bacterial morphogenesis and growth fitness. We found that detrimental effect of D-CAN in A. tumefaciens can be suppressed by a single amino acid substitution in the cell division PG transpeptidase penicillin-binding protein 3a (PBP3a). 

Rhizobiales are a polar-growing species that encode multiple LD-transpeptidases (LDTs), enzymes that normally perform PG crosslinking, but that can also incorporate NCDAAs into termini of the PG peptides. As these species incorporate high amounts of D-CAN in their PG, we hypothesized that LDTs might represent the main path used by NCDAAs to edit A. tumefaciens’ PG and cause their detrimental effects. Therefore, we decided to further explore the significance of LDT proteins for growth and morphogenesis in A. tumefaciens. While in the Gram-negative model organism E. coli LDT proteins are non-essential under standard laboratory conditions, we found that A. tumefaciens needs at least one LDT for growth out of the 14 putative LDTs encoded in its genome. Moreover, clustering the LDT proteins based on their sequence similarity revealed that A. tumefaciens has 7 LDTs that are exclusively present among Rhizobiales. Interestingly, the loss of this group of LDTs (but not the rest) leads to reduced growth, lower PG crosslinkage and rounded cell phenotype, which suggests that this group of Rhizobiales- specific LDTs have a major role in maintaining LD-crosslinking homeostasis, which in turn is important for cell elongation and proper shape maintenance in A. tumefaciens.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2021. s. 59
Serie
Umeå University medical dissertations, ISSN 0346-6612 ; 2139
Nyckelord
Bacteria, cell wall, peptidoglycan, D-amino acids, LD-transpeptidase
Nationell ämneskategori
Mikrobiologi
Identifikatorer
urn:nbn:se:umu:diva-182615 (URN)978-91-7855-557-4 (ISBN)978-91-7855-556-7 (ISBN)
Disputation
2021-05-21, Thymine/Uracil, Institutionen för molekylärbiologi, Umeå, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2021-04-30 Skapad: 2021-04-27 Senast uppdaterad: 2021-04-28Bibliografiskt granskad

Open Access i DiVA

fulltext(2796 kB)511 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 2796 kBChecksumma SHA-512
6a87ff337053e7420abccb57455f24ae7650bbf3d7f3a3311cac1ce1f6209f701a6b8c141778c59af24f0369c3082447a6cb2c750935b4a04e63f857f7940786
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Aliashkevich, AlenaCava, Felipe

Sök vidare i DiVA

Av författaren/redaktören
Aliashkevich, AlenaCava, Felipe
Av organisationen
Molekylär Infektionsmedicin, Sverige (MIMS)Institutionen för molekylärbiologi (Medicinska fakulteten)Umeå Centre for Microbial Research (UCMR)
I samma tidskrift
Environmental Microbiology
Mikrobiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 563 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 375 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf