Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automated IoT device identification based on full packet information using real-time network traffic
Department of Computer Science, Aalto University, Tietotekniikantalo, Konemiehentie 2, Espoo, Finland.
Department of Computer Science, Aalto University, Tietotekniikantalo, Konemiehentie 2, Espoo, Finland; Department of Computing and Informatics, Bournemouth University, Fern Barrow, Dorest, Poole, United Kingdom.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Department of Computer Science, Aalto University, Tietotekniikantalo, Konemiehentie 2, Espoo, Finland.ORCID-id: 0000-0002-8078-5172
2021 (Engelska)Ingår i: Sensors, E-ISSN 1424-8220, Vol. 21, nr 8, artikel-id 2660Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In an Internet of Things (IoT) environment, a large volume of potentially confidential data might be leaked from sensors installed everywhere. To ensure the authenticity of such sensitive data, it is important to initially verify the source of data and its identity. Practically, IoT device identification is the primary step toward a secure IoT system. An appropriate device identification approach can counteract malicious activities such as sending false data that trigger irreparable security issues in vital or emergency situations. Recent research indicates that primary identity metrics such as Internet Protocol (IP) or Media Access Control (MAC) addresses are insufficient due to their instability or easy accessibility. Thus, to identify an IoT device, analysis of the header information of packets by the sensors is of imperative consideration. This paper proposes a combination of sensor measurement and statistical feature sets in addition to a header feature set using a classification-based device identification framework. Various machine Learning algorithms have been adopted to identify different combinations of these feature sets to provide enhanced security in IoT devices. The proposed method has been evaluated through normal and under-attack circumstances by collecting real-time data from IoT devices connected in a lab setting to show the system robustness.

Ort, förlag, år, upplaga, sidor
MDPI, 2021. Vol. 21, nr 8, artikel-id 2660
Nyckelord [en]
Device identification, Device profiling, IoT Security, Machine learning, Real-time traffic
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-182363DOI: 10.3390/s21082660ISI: 000644798800001Scopus ID: 2-s2.0-85103847566OAI: oai:DiVA.org:umu-182363DiVA, id: diva2:1548004
Tillgänglig från: 2021-04-28 Skapad: 2021-04-28 Senast uppdaterad: 2023-09-05Bibliografiskt granskad

Open Access i DiVA

fulltext(1189 kB)345 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1189 kBChecksumma SHA-512
d48986595f50e871547034c7a06113ad85610535d3d9ca5657c32bcaa8c276c4094ea8f67d256080d3da4607fd30726845d91142e5c48e40186fedf058c748e6
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Främling, Kary

Sök vidare i DiVA

Av författaren/redaktören
Främling, Kary
Av organisationen
Institutionen för datavetenskap
I samma tidskrift
Sensors
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 345 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 373 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf