Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Plasma Protein Biomarker Strategy for Detection of Small Intestinal Neuroendocrine Tumors
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: Neuroendocrinology, ISSN 0028-3835, E-ISSN 1423-0194, Vol. 111, s. 840-849Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background: Small intestinal neuroendocrine tumors (SI-NETs) are difficult to diagnose in the early stage of disease. Current blood biomarkers such as chromogranin A (CgA) and 5-hydroxyindolacetic acid have low sensitivity (SEN) and specificity (SPE). This is a first preplanned interim analysis (Nordic non-interventional, prospective, exploratory, EXPLAIN study [NCT02630654]). Its objective is to investigate if a plasma protein multi-biomarker strategy can improve diagnostic accuracy (ACC) in SI-NETs.

Methods: At the time of diagnosis, before any disease-specific treatment was initiated, blood was collected from patients with advanced SI-NETs and 92 putative cancer-related plasma proteins from 135 patients were analyzed and compared with the results of age- and sex-matched controls (n = 143), using multiplex proximity extension assay and machine learning techniques.

Results: Using a random forest model including 12 top ranked plasma proteins in patients with SI-NETs, the multi-biomarker strategy showed SEN and SPE of 89 and 91%, respectively, with negative predictive value (NPV) and positive predictive value (PPV) of 90 and 91%, respectively, to identify patients with regional or metastatic disease with an area under the receiver operator characteristic curve (AUROC) of 99%. In 30 patients with normal CgA concentrations, the model provided a diagnostic SPE of 98%, SEN of 56%, and NPV 90%, PPV of 90%, and AUROC 97%, regardless of proton pump inhibitor intake.

Conclusion: This interim analysis demonstrates that a multi-biomarker/machine learning strategy improves diagnostic ACC of patients with SI-NET at the time of diagnosis, especially in patients with normal CgA levels. The results indicate that this multi-biomarker strategy can be useful for early detection of SI-NETs at presentation and conceivably detect recurrence after radical primary resection.

Ort, förlag, år, upplaga, sidor
S. Karger, 2021. Vol. 111, s. 840-849
Nyckelord [en]
Neuroendocrine tumor, Biomarker, Diagnosis, Machine learning
Nationell ämneskategori
Kirurgi
Identifikatorer
URN: urn:nbn:se:umu:diva-182711DOI: 10.1159/000510483ISI: 000686170600004PubMedID: 32721955Scopus ID: 2-s2.0-85113294444OAI: oai:DiVA.org:umu-182711DiVA, id: diva2:1548780
Tillgänglig från: 2021-05-03 Skapad: 2021-05-03 Senast uppdaterad: 2022-07-06Bibliografiskt granskad

Open Access i DiVA

fulltext(355 kB)152 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 355 kBChecksumma SHA-512
e2fde422f130597cafc28d6d6f1159e76e4b4edee4379e4ec909623f908e8916688bd441cbab9c2d9eb453e19867f21f5b3a3add0af8d436677640354b23ba9b
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Lindberg, Fredrik

Sök vidare i DiVA

Av författaren/redaktören
Lindberg, Fredrik
Av organisationen
Kirurgi
I samma tidskrift
Neuroendocrinology
Kirurgi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 152 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 59 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf