Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Optical frequency comb Fourier transform spectroscopy of 14N216O at 7.8 µm
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Laser & Fiber Electronics Group, Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland.
Laser & Fiber Electronics Group, Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland.
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: Journal of Quantitative Spectroscopy and Radiative Transfer, ISSN 0022-4073, E-ISSN 1879-1352, Vol. 271, artikel-id 107734Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We use a Fourier transform spectrometer based on a compact mid-infrared difference frequency generation comb source to perform broadband high-resolution measurements of nitrous oxide, 14N216O, and retrieve line center frequencies of the ν1 fundamental band and the ν1 + ν2 – ν2 hot band. The spectrum spans 90 cm−1 around 1285 cm−1 with a sample point spacing of 3 × 10−4 cm−1 (9 MHz). We report line positions of 72 lines in the ν1 fundamental band between P(37) and R(38), and 112 lines in the ν1 + ν2 – ν2 hot band (split into two components with e/f rotationless parity) between P(34) and R(33), with uncertainties in the range of 90-600 kHz. We derive upper state constants of both bands from a fit of the effective ro-vibrational Hamiltonian to the line center positions. For the fundamental band, we observe excellent agreement in the retrieved line positions and upper state constants with those reported in a recent study by AlSaif et al. using a comb-referenced quantum cascade laser [J Quant Spectrosc Radiat Transf, 2018;211:172-178]. We determine the origin of the hot band with precision one order of magnitude better than previous work based on FTIR measurements by Toth [http://mark4sun.jpl.nasa.gov/n2o.html], which is the source of the HITRAN2016 data for these bands.

Ort, förlag, år, upplaga, sidor
Elsevier, 2021. Vol. 271, artikel-id 107734
Nyckelord [en]
Fourier transform spectroscopy, High-resolution spectroscopy, Nitrous oxide, Optical frequency comb
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
URN: urn:nbn:se:umu:diva-184121DOI: 10.1016/j.jqsrt.2021.107734ISI: 000677683500004Scopus ID: 2-s2.0-85106642195OAI: oai:DiVA.org:umu-184121DiVA, id: diva2:1563559
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse, 2015.0159Vetenskapsrådet, 2016-03593Tillgänglig från: 2021-06-10 Skapad: 2021-06-10 Senast uppdaterad: 2023-11-13Bibliografiskt granskad
Ingår i avhandling
1. Precision molecular spectroscopy in the near- and mid-infrared using frequency comb-based Fourier transform spectrometers
Öppna denna publikation i ny flik eller fönster >>Precision molecular spectroscopy in the near- and mid-infrared using frequency comb-based Fourier transform spectrometers
2023 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Molekylär precisionsspektroskopi i det när- och mellaninfraröda med frekvenskamsbaserade Fouriertransformspektrometrar
Abstract [en]

Absorption spectroscopy is a powerful scientific tool for non-invasive and remote sensing applications ranging from atmospheric monitoring to astrophysics. In spectroscopic detection schemes it is necessary to have spectral models for any molecular species to be detected or quantified. Such models are often based on spectroscopic measurements or at the very least require experimental validation. The experimental data need to be accurate in terms of absorption line positions and intensities, but should also cover as many absorption lines as possible, i.e. broadband measurements are highly desirable.

Fourier transform spectroscopy (FTS) based on optical frequency combs (OFCs) can supply laboratory data that meet these requirements. OFCs provide a broad optical bandwidth and high spectral brightness, and also revolutionized our ability to measure optical frequencies, which had a profound impact on the frequency accuracy of spectroscopic measurements. The combination of OFCs and FTS, using the recently developed sub-nominal resolution technique, allows for measuring broadband absorption spectra with very high resolution, and a frequency accuracy provided by the OFCs. The aim of the work in this thesis was to expand the application of sub-nominal OFC-FTS to provide the much needed high-accuracy data for validation and development of spectroscopic databases of molecules relevant for a wide range of sensing application.

We developed a spectrometer to target the strong molecular absorption bands in the mid-infrared using two OFC sources based on difference frequency generation (DFG) emitting in the 3 μm and 8 μm wavelength ranges. We measured the spectra of iodomethane, CH3I, and dibromomethane, CH2Br2, around 3 μm, fitted Hamiltonian models to several bands using the PGOPHER software, and reported molecular constants. For CH3I we improved on previous models, while for CH2Br2 we presented a new interpretation of the spectrum. We also reported the first assessments of line intensities of CH3I performed using multispectral fitting. At 8 μm, we implemented OFC-FTS based on a fiber-based compact DFG OFC source and measured low pressure spectra of nitrous oxide, N2O, methane, CH4, and formaldehyde, H2CO. After the frequency accuracy was confirmed by excellent agreement with an earlier accurate study of N2O, we compiled extensive line lists for CH4 and H2CO containing hundreds of transition frequencies with a precision improved by one order of magnitude compared to previously available data, and also reported line intensities for most transitions. For CH4 the new data were used to improve a global Hamiltonian model, while the H2CO data were incorporated into an algorithm based on spectroscopic networks to yield better precision in predicted energy levels and transition frequencies.

We also further developed a recent implementation of double resonance (DR) spectroscopy where optical pumping by a continuous-wave laser was used to populate selected vibrational energy levels of CH4 not populated at room temperature, and a near-infrared OFC probed sub-Doppler transitions from the pumped states. Such measurements are necessary to validate theoretical predictions of transitions between excited vibrational levels that are relevant for high-temperature environments such as the atmospheres of hot celestial objects. We reported an improved measurement setup using a new pump laser, new enhancement cavity with an updated OFC-cavity locking scheme, and measured transitions between more highly excited rotational levels than was previously reported. The higher rotational excitations lead to a larger number of DR transitions, which could be readily detected in the broadband high-resolution OFC-FTS spectra. We retrieved parameters of 88 lines of which we could assign 79 to theoretically predicted transitions. We found systematic frequency discrepancies with the predictions, that had not been observed earlier for lower rotational levels.

These implementations of sub-nominal OFC-FTS thus provided highly accurate line lists and improved spectral models of absorption bands of several molecules in the universally important mid-infrared region, as well as the first detection of 88 transitions between excited vibrational states of CH4 relevant for high-temperature environments. We demonstrated the high potential of these techniques for collecting large amounts of accurate spectroscopic data, that further the scope of applicability of molecular spectroscopy.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2023. s. 94
Nyckelord
optical frequency comb, molecular spectroscopy, Fourier transform spectrometer, high resolution, mid-infrared, line list, double-resonance spectroscopy, difference frequency generation
Nationell ämneskategori
Atom- och molekylfysik och optik
Forskningsämne
fysik
Identifikatorer
urn:nbn:se:umu:diva-216403 (URN)978-91-8070-131-0 (ISBN)978-91-8070-130-3 (ISBN)
Disputation
2023-12-07, NAT.D.480, Naturvetarhuset, Umeå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2023-11-16 Skapad: 2023-11-10 Senast uppdaterad: 2023-11-13Bibliografiskt granskad

Open Access i DiVA

fulltext(1162 kB)204 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1162 kBChecksumma SHA-512
30704d0a10469ea88ce608abc6843b04dc499c9b137bba8c7f73cb7e1dd11f06c718166f714b5dd2e187bf40aad0a4ef429528824b45c76335dabbe1afc565b6
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Hjältén, AdrianGermann, MatthiasFoltynowicz, Aleksandra

Sök vidare i DiVA

Av författaren/redaktören
Hjältén, AdrianGermann, MatthiasFoltynowicz, Aleksandra
Av organisationen
Institutionen för fysik
I samma tidskrift
Journal of Quantitative Spectroscopy and Radiative Transfer
Atom- och molekylfysik och optik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 204 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 243 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf