Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evidence and Effects of Ion Transfer at Active-Material/Electrode Interfaces in Solution-Fabricated Light-Emitting Electrochemical Cells
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
LunaLEC AB, Umeå, Sweden.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. LunaLEC AB, Umeå, Sweden.ORCID-id: 0000-0002-2480-3786
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: Advanced Electronic Materials, E-ISSN 2199-160X, Vol. 7, nr 8, artikel-id 2100253Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The light-emitting electrochemical cell (LEC) allows for energy- and cost-efficient printing and coating fabrication of its entire device structure, including both electrodes and the single-layer active material. This attractive fabrication opportunity is enabled by the electrochemical action of mobile ions in the active material. However, a related and up to now overlooked issue is that such solution-fabricated LECs commonly comprise electrode/active-material interfaces that are open for transfer of the mobile ions, and it is herein demonstrated that a majority of the mobile anions in a common spray-coated active material can transfer into a spray-coated poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) positive electrode during LEC operation. Since it is well established that the mobile ion concentration in the active material has a profound influence on the LEC performance, this significant ion transfer is an important factor that should be considered in the design of low-cost LEC devices that deliver high performance.

Ort, förlag, år, upplaga, sidor
Wiley-Blackwell Publishing Inc., 2021. Vol. 7, nr 8, artikel-id 2100253
Nyckelord [en]
active-material design, electrode electrochemistry, ion transfer, light-emitting electrochemical cell, PEDOT:PSS, solution fabrication
Nationell ämneskategori
Materialkemi Atom- och molekylfysik och optik
Identifikatorer
URN: urn:nbn:se:umu:diva-185329DOI: 10.1002/aelm.202100253ISI: 000662108100001Scopus ID: 2-s2.0-85108074845OAI: oai:DiVA.org:umu-185329DiVA, id: diva2:1574313
Forskningsfinansiär
Carl Tryggers stiftelse för vetenskaplig forskning KempestiftelsernaOlle Engkvists stiftelseInterreg NordBertil & Britt Svenssons Stiftelse för BelysningsteknikVetenskapsrådetEnergimyndighetenRegion VästerbottenTillgänglig från: 2021-06-28 Skapad: 2021-06-28 Senast uppdaterad: 2023-03-31Bibliografiskt granskad
Ingår i avhandling
1. Solution-processed light-emitting electrochemical cells: challenges and opportunities
Öppna denna publikation i ny flik eller fönster >>Solution-processed light-emitting electrochemical cells: challenges and opportunities
2023 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Our world is filling up with electronics. High-tech gadgets are integrated everywhere, from smart fridges able to track expiry dates and food usage, to microchip implants that let us unlock doors and pay with our hands. As innovative as they are, these new products and the many more to come impose new requirements on materials and fabrication methods. For instance, emerging electronic technologies that deliver light emission such as smart labels, authenticity features and light-based medical therapies, are often required to be flexible, see-through and low-cost, and in addition sustainable to fabricate, operate and recycle.

In response to these challenges, the light-emitting industry is turning to organic electronics for solutions, a field that promises resource-efficient fabrication using environmentally benign materials. An interesting proposal is that of the light-emitting electrochemical cell (LEC), which, thanks to its simple structure, is well suitedfor high-throughput fabrication. The LEC is in many aspects a smart device, able to reorganize itself during operation via the electrochemical action of mobile ions, which create the injection and transport layers that require additional fabrication steps in other technologies. This elegant behavior makes the LEC tolerant to a large array of materials and fabrication methods, and hence a good fit for many applications.

Yet the LEC is still today a scientific curiosity rather than an actual commercial solution and among the very few prototypes available on the market, none are able to meet the combined performance, resource efficiency and sustainability criteria. As a matter of fact, of the three layers that make an LEC, i.e., two electrodes surrounding an active material, only the later meet these requirements thanks to a strong recent research effort. In comparison, the electrodes have received little attention and are almost exclusively comprising metals or metal oxides deposited by time- and energy-expensive fabrication methods, making the LEC as a whole unfit for many applications.

In an effort to push the LEC toward the untapped commercial niche of low-cost lighting, we tackle the problem of electrode fabrication with resource-efficiency in mind. We first show that up-scalable spray coating of inks under ambient air is a viable mean of fabrication for both active materials and electrodes alike. However, in doing so, we find that we create electrode interfaces that are open to ion transfer; an up-to-now overlooked issue that needs careful consideration when designing solution-processed LECs. Building on our discovery, we demonstrate that it is possible to fabricate an LEC entirely by using spray coating metal-free and organic inks; thereby demonstrating that an all-organic, metal-free and resource-efficient LEC is possible.

I hope that our efforts will encourage others to work on solution-processed LECs, electrodes included, and develop ready-to-use products.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2023. s. 50
Nyckelord
Light-emitting electrochemical cell, PEDOT:PSS, Photonics, Ion transfer, Solution-based fabrication
Nationell ämneskategori
Annan fysik
Forskningsämne
elektronik; materialvetenskap; jonfysik
Identifikatorer
urn:nbn:se:umu:diva-206243 (URN)978-91-8070-027-6 (ISBN)978-91-8070-026-9 (ISBN)
Disputation
2023-04-26, Hörsal NAT.D.410, Naturvetarhuset, Umeå, 09:30 (Engelska)
Opponent
Handledare
Tillgänglig från: 2023-04-05 Skapad: 2023-03-31 Senast uppdaterad: 2023-03-31Bibliografiskt granskad

Open Access i DiVA

fulltext(1306 kB)159 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 1306 kBChecksumma SHA-512
499dce9ebd8b0db7a384907e4a63d961deb514d118604a5b70f3557782951aafb7b5d2743f4a83f9cda0cb95909af805703f3b2f56e6448afd5b65e7beafd8ab
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Auroux, EtienneSandström, AndreasLarsen, ChristianZäll, ErikLundberg, PetterWågberg, ThomasEdman, Ludvig

Sök vidare i DiVA

Av författaren/redaktören
Auroux, EtienneSandström, AndreasLarsen, ChristianZäll, ErikLundberg, PetterWågberg, ThomasEdman, Ludvig
Av organisationen
Institutionen för fysik
I samma tidskrift
Advanced Electronic Materials
MaterialkemiAtom- och molekylfysik och optik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 195 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 457 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf