Electro-hydraulic actuators are complex systems with uncertainties in their parameters and disregarded dynamics due to its complexity. This paper presents a disturbance observer-based controller method for the accurate position regulation of an electro-hydraulic actuator. To this aim, a super-twisting algorithm-based observer identifies the plant uncertainties and neglected dynamics, theoretically, in finite-time. Thus, a compensation based controller is designed to counteract the uncertainty and neglected dynamics effects through feedback, improving the position regulation accuracy. The closed-loop analysis is carried out using Lyapunov theory. The feasibility of the controller is validated through high-fidelity simulations and experiments in a forestry crane.