Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Comparing seven methods for state-of-health time series prediction for the lithium-ion battery packs of forklifts
Department of Computer Science, Aalto University, Espoo, Finland.
Department of Mechanical Engineering, Aalto University, Espoo, Finland.
Department of Computer Science, Aalto University, Espoo, Finland; Department of Computing and Informatics, Bournemouth University, Bournemouth, UK.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Department of Computer Science, Aalto University, Espoo, Finland.ORCID-id: 0000-0002-8078-5172
2021 (Engelska)Ingår i: Applied Soft Computing, ISSN 1568-4946, E-ISSN 1872-9681, Vol. 111, artikel-id 107670Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A key aspect for the forklifts is the state-of-health (SoH) assessment to ensure the safety and the reliability of uninterrupted power source. Forecasting the battery SoH well is imperative to enable preventive maintenance and hence to reduce the costs. This paper demonstrates the capabilities of gradient boosting regression for predicting the SoH timeseries under circumstances when there is little prior information available about the batteries. We compared the gradient boosting method with light gradient boosting, extra trees, extreme gradient boosting, random forests, long short-term memory networks and with combined convolutional neural network and long short-term memory networks methods. We used multiple predictors and lagged target signal decomposition results as additional predictors and compared the yielded prediction results with different sets of predictors for each method. For this work, we are in possession of a unique data set of 45 lithium-ion battery packs with large variation in the data. The best model that we derived was validated by a novel walk-forward algorithm that also calculates point-wise confidence intervals for the predictions; we yielded reasonable predictions and confidence intervals for the predictions. Furthermore, we verified this model against five other lithium-ion battery packs; the best model generalised to greater extent to this set of battery packs. The results about the final model suggest that we were able to enhance the results in respect to previously developed models. Moreover, we further validated the model for extracting cycle counts presented in our previous work with data from new forklifts; their battery packs completed around 3000 cycles in a 10-year service period, which corresponds to the cycle life for commercial Nickel–Cobalt–Manganese (NMC) cells.

Ort, förlag, år, upplaga, sidor
Elsevier, 2021. Vol. 111, artikel-id 107670
Nyckelord [en]
Electrical vehicles, State-of-health for lithium-ion batteries, Machine learning, Neural networks, Time-series prediction
Nationell ämneskategori
Annan data- och informationsvetenskap
Forskningsämne
matematisk logik
Identifikatorer
URN: urn:nbn:se:umu:diva-186678DOI: 10.1016/j.asoc.2021.107670ISI: 000729971800010Scopus ID: 2-s2.0-85110068974OAI: oai:DiVA.org:umu-186678DiVA, id: diva2:1585675
Forskningsfinansiär
Wallenberg AI, Autonomous Systems and Software Program (WASP), 570011220Tillgänglig från: 2021-08-17 Skapad: 2021-08-17 Senast uppdaterad: 2023-09-05Bibliografiskt granskad

Open Access i DiVA

fulltext(1230 kB)219 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1230 kBChecksumma SHA-512
3a3f9d1acb28986cc2e30419f2e7ec243a424963a1b9d1c8e637865c220501bf87249d705767c05019bfa0bbb409b42efde636b3231ecaf161016741c7c370d4
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Främling, Kary

Sök vidare i DiVA

Av författaren/redaktören
Främling, Kary
Av organisationen
Institutionen för datavetenskap
I samma tidskrift
Applied Soft Computing
Annan data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 219 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 325 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf