Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Survey on Tree Aggregation
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0002-0368-8037
2021 (Engelska)Ingår i: 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE, 2021, Vol. 2021-JulyKonferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The research dedicated to the aggregation of classification trees and general trees (hierarchical structure of objects) has made enormous progress in the past decade. The problem statement for aggregation of classification trees or general trees is as follows: Given k classification or general trees for a set of objects, we aim to build a consensus tree (classification or general). That is, a representative tree for the given trees. In this paper, we explore different perspectives for the motivation to construct a single tree from multiple trees given by researchers. The survey presents the approaches for the aggregation of both the classification trees as well as general trees. We bifurcate our study of the aggregation approaches into two categories: Selecting a single tree from multiple trees and merging trees. We will discuss these categories and the aggregation approaches under these categories in the paper comprehensively. We also discuss the privacy aspects of tree aggregation approaches and the possible directions for new research like using the technique of aggregating decision trees in the field of Federated Learning, which is a booming topic.

Ort, förlag, år, upplaga, sidor
IEEE, 2021. Vol. 2021-July
Serie
IEEE International Fuzzy Systems conference proceedings, ISSN 1544-5615, E-ISSN 1558-4739
Nyckelord [en]
Federated Learning, Privacy, Tree Aggregation
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
data- och systemvetenskap
Identifikatorer
URN: urn:nbn:se:umu:diva-187671DOI: 10.1109/FUZZ45933.2021.9494546ISI: 000698710800127Scopus ID: 2-s2.0-85114680117ISBN: 978-1-6654-4407-1 (digital)ISBN: 978-1-6654-4408-8 (tryckt)OAI: oai:DiVA.org:umu-187671DiVA, id: diva2:1595859
Konferens
2021 IEEE CIS International Conference on Fuzzy Systems, FUZZ 2021, Online (Luxembourg), July 11-14, 2021.
Anmärkning

Part of the series IEEE CIS International Conference on Fuzzy Systems, issn 1098-7584.

Tillgänglig från: 2021-09-20 Skapad: 2021-09-20 Senast uppdaterad: 2023-09-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Kwatra, SaloniTorra, Vicenç

Sök vidare i DiVA

Av författaren/redaktören
Kwatra, SaloniTorra, Vicenç
Av organisationen
Institutionen för datavetenskap
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 260 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf