Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Identifying discriminative features for diagnosis of Kashin-Beck disease among adolescents
School of Public Health, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an, Shaanxi, P.R. China.
School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China.
Institute of Disaster Medicine, Tianjin University, Tianjin, P.R. China.
Department of Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, P. R. China.
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: BMC Musculoskeletal Disorders, E-ISSN 1471-2474, Vol. 22, nr 1, artikel-id 801Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

INTRODUCTION: Diagnosing Kashin-Beck disease (KBD) involves damages to multiple joints and carries variable clinical symptoms, posing great challenge to the diagnosis of KBD for clinical practitioners. However, it is still unclear which clinical features of KBD are more informative for the diagnosis of Kashin-Beck disease among adolescent.

METHODS: We first manually extracted 26 possible features including clinical manifestations, and pathological changes of X-ray images from 400 KBD and 400 non-KBD adolescents. With such features, we performed four classification methods, i.e., random forest algorithms (RFA), artificial neural networks (ANNs), support vector machines (SVMs) and linear regression (LR) with four feature selection methods, i.e., RFA, minimum redundancy maximum relevance (mRMR), support vector machine recursive feature elimination (SVM-RFE) and Relief. The performance of diagnosis of KBD with respect to different classification models were evaluated by sensitivity, specificity, accuracy, and the area under the receiver operating characteristic (ROC) curve (AUC).

RESULTS: Our results demonstrated that the 10 out of 26 discriminative features were displayed more powerful performance, regardless of the chosen of classification models and feature selection methods. These ten discriminative features were distal end of phalanges alterations, metaphysis alterations and carpals alterations and clinical manifestations of ankle joint movement limitation, enlarged finger joints, flexion of the distal part of fingers, elbow joint movement limitation, squatting limitation, deformed finger joints, wrist joint movement limitation.

CONCLUSIONS: The selected ten discriminative features could provide a fast, effective diagnostic standard for KBD adolescents.

Ort, förlag, år, upplaga, sidor
BioMed Central, 2021. Vol. 22, nr 1, artikel-id 801
Nyckelord [en]
Adolescents, Diagnosis, Feature selection, Kashin-Beck disease, Machine learning algorithms
Nationell ämneskategori
Ortopedi Cell- och molekylärbiologi Reumatologi och inflammation
Forskningsämne
diagnostisk radiologi; ortopedi; reumatologi
Identifikatorer
URN: urn:nbn:se:umu:diva-187760DOI: 10.1186/s12891-021-04514-zPubMedID: 34537022Scopus ID: 2-s2.0-85115159166OAI: oai:DiVA.org:umu-187760DiVA, id: diva2:1595967
Tillgänglig från: 2021-09-21 Skapad: 2021-09-21 Senast uppdaterad: 2024-01-17Bibliografiskt granskad

Open Access i DiVA

fulltext(1860 kB)160 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1860 kBChecksumma SHA-512
4f1543833754787e51eb9595597592ea6033966b1a2a9398e9ac5bcdf0c690eb94d0dde8b9ef1ed6eb822e4c63b17e3c1a320da9e03d3a48fb9a2c93b245ddcb
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Lammi, Mikko

Sök vidare i DiVA

Av författaren/redaktören
Lammi, Mikko
Av organisationen
Institutionen för integrativ medicinsk biologi (IMB)
I samma tidskrift
BMC Musculoskeletal Disorders
OrtopediCell- och molekylärbiologiReumatologi och inflammation

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 160 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 243 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf