Given a graph (Formula presented.), its auxiliary square-graph (Formula presented.) is the graph whose vertices are the non-edges of (Formula presented.) and whose edges are the pairs of non-edges which induce a square (i.e., a 4-cycle) in (Formula presented.). We determine the threshold edge-probability (Formula presented.) at which the Erdős–Rényi random graph (Formula presented.) begins to asymptotically almost surely (a.a.s.) have a square-graph with a connected component whose squares together cover all the vertices of (Formula presented.). We show (Formula presented.), a polylogarithmic improvement on earlier bounds on (Formula presented.) due to Hagen and the authors. As a corollary, we determine the threshold (Formula presented.) at which the random right-angled Coxeter group (Formula presented.) a.a.s. becomes strongly algebraically thick of order 1 and has quadratic divergence.