Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Auction-based Federated Learning using Software-defined Networking for resource efficiency
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. (Autonomous Distributed Systems Lab)ORCID-id: 0000-0003-2514-3043
School of Computer Science and Engineering, Nanyang Technological University, Singapore.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0002-2633-6798
2021 (Engelska)Ingår i: Proceedings of the 2021 17th International Conference on Network and Service Management: Smart Management for Future Networks and Services, CNSM 2021, IEEE, 2021, s. 42-48Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The training of global models using federated learning (FL) strategies is complicated by variations in local model quality arising from variation in data distribution across individual clients. A wide range of training strategies could be created by varying the size and distribution of the training data and the number of training iterations to be performed. All these variables affect both model quality and resource consumption. To facilitate the selection of good training strategies, we propose an auction-based FL method that can identify a training strategy that is optimal in terms of resource management efficiency subject to a given model quality requirement. An auction method is used to dynamically select resource-efficient FL clients and local models to minimize resource usage. This is enabled by using Software-defined Networking (SDN) to support the dynamic management of FL clients. We show that resource-optimal FL strategies can be implemented in the cloud/edge services market; dynamic quality-based model selection can reduce resource costs by up to 17% from the FL server's perspective. Moreover, the client utility function presented herein helps FL clients adopt practical trading strategies to cooperate efficiently with FL servers.

Ort, förlag, år, upplaga, sidor
IEEE, 2021. s. 42-48
Serie
International Conference on Network and Service Management, E-ISSN 2165-963X
Nyckelord [en]
Federated learning, cloud computing, softwaredefined networking, auction method, quality-based incentive
Nationell ämneskategori
Datorsystem
Forskningsämne
datalogi
Identifikatorer
URN: urn:nbn:se:umu:diva-190080DOI: 10.23919/CNSM52442.2021.9615554Scopus ID: 2-s2.0-85123433852ISBN: 978-3-903176-36-2 (digital)OAI: oai:DiVA.org:umu-190080DiVA, id: diva2:1616707
Konferens
CNSM 2021, 17th International Conference on Network and Service Management, Virtual via Izmir, Turkey, October 25-29, 2021
Forskningsfinansiär
Wallenberg AI, Autonomous Systems and Software Program (WASP)Tillgänglig från: 2021-12-03 Skapad: 2021-12-03 Senast uppdaterad: 2022-02-03Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Seo, EunilElmroth, Erik

Sök vidare i DiVA

Av författaren/redaktören
Seo, EunilElmroth, Erik
Av organisationen
Institutionen för datavetenskap
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 301 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf