Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mapping the spatial distribution of the dengue vector Aedes aegypti and predicting its abundance in northeastern Thailand using machine-learning approach
Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Statistics, Begum Rokeya University, Rangpur, Rangpur, Bangladesh.
Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand.
Environmental Engineering and Management Program, Asian Institute of Technology, Pathumthani, Thailand.
Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand.
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: One Health, ISSN 2352-7714, Vol. 13, artikel-id 100358Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background: Mapping the spatial distribution of the dengue vector Aedes (Ae.) aegypti and accurately predicting its abundance are crucial for designing effective vector control strategies and early warning tools for dengue epidemic prevention. Socio-ecological and landscape factors influence Ae. aegypti abundance. Therefore, we aimed to map the spatial distribution of female adult Ae. aegypti and predict its abundance in northeastern Thailand based on socioeconomic, climate change, and dengue knowledge, attitude and practices (KAP) and/or landscape factors using machine learning (ML)-based system.

Method: A total of 1066 females adult Ae. aegypti were collected from four villages in northeastern Thailand during January–December 2019. Information on household socioeconomics, KAP regarding climate change and dengue, and satellite-based landscape data were also acquired. Geographic information systems (GIS) were used to map the household-based spatial distribution of female adult Ae. aegypti abundance (high/low). Five popular supervised learning models, logistic regression (LR), support vector machine (SVM), k-nearest neighbor (kNN), artificial neural network (ANN), and random forest (RF), were used to predict females adult Ae. aegypti abundance (high/low). The predictive accuracy of each modeling technique was calculated and evaluated. Important variables for predicting female adult Ae. aegypti abundance were also identified using the best-fitted model.

Results: Urban areas had higher abundance of female adult Ae. aegypti compared to rural areas. Overall, study respondents in both urban and rural areas had inadequate KAP regarding climate change and dengue. The average landscape factors per household in urban areas were rice crop (47.4%), natural tree cover (17.8%), built-up area (13.2%), permanent wetlands (21.2%), and rubber plantation (0%), and the corresponding figures for rural areas were 12.1, 2.0, 38.7, 40.1 and 0.1% respectively. Among all assessed models, RF showed the best prediction performance (socioeconomics: area under curve, AUC = 0.93, classification accuracy, CA = 0.86, F1 score = 0.85; KAP: AUC = 0.95, CA = 0.92, F1 = 0.90; landscape: AUC = 0.96, CA = 0.89, F1 = 0.87) for female adult Ae. aegypti abundance. The combined influences of all factors further improved the predictive accuracy in RF model (socioeconomics + KAP + landscape: AUC = 0.99, CA = 0.96 and F1 = 0.95). Dengue prevention practices were shown to be the most important predictor in the RF model for female adult Ae. aegypti abundance in northeastern Thailand.

Conclusion: The RF model is more suitable for the prediction of Ae. aegypti abundance in northeastern Thailand. Our study exemplifies that the application of GIS and machine learning systems has significant potential for understanding the spatial distribution of dengue vectors and predicting its abundance. The study findings might help optimize vector control strategies, future mosquito suppression, prediction and control strategies of epidemic arboviral diseases (dengue, chikungunya, and Zika). Such strategies can be incorporated into One Health approaches applying transdisciplinary approaches considering human-vector and agro-environmental interrelationships.

Ort, förlag, år, upplaga, sidor
Elsevier, 2021. Vol. 13, artikel-id 100358
Nyckelord [en]
Aedes aegypti, Dengue, Early warning, Prediction, Supervised learning
Nationell ämneskategori
Folkhälsovetenskap, global hälsa och socialmedicin
Forskningsämne
epidemiologi
Identifikatorer
URN: urn:nbn:se:umu:diva-190538DOI: 10.1016/j.onehlt.2021.100358ISI: 000731839400003Scopus ID: 2-s2.0-85120781104OAI: oai:DiVA.org:umu-190538DiVA, id: diva2:1621343
Tillgänglig från: 2021-12-17 Skapad: 2021-12-17 Senast uppdaterad: 2025-02-20Bibliografiskt granskad

Open Access i DiVA

fulltext(5075 kB)150 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 5075 kBChecksumma SHA-512
df1928a881af9f0246e218ccce4b33c84bfbd47256da81dd6c4fd2221ed2b9992e1225f0be75ff03dc426807a4938325b3dd42cb0834a86ba3bdc27e2c080643
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Rocklöv, Joacim

Sök vidare i DiVA

Av författaren/redaktören
Rocklöv, Joacim
Av organisationen
Avdelningen för hållbar hälsa
I samma tidskrift
One Health
Folkhälsovetenskap, global hälsa och socialmedicin

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 150 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 324 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf