Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
ADaMaP: Automatic Alignment of Relational Data Sources Using Mapping Patterns
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Free University of Bozen-Bolzano, Bolzano, Italy.
Technion – Israel Institute of Technology, Haifa, Israel.
Technion – Israel Institute of Technology, Haifa, Israel.
Free University of Bozen-Bolzano, Bolzano, Italy.
Visa övriga samt affilieringar
2021 (Engelska)Ingår i: Advanced Information Systems Engineering: 33rd International Conference, CAiSE 2021 Melbourne, VIC, Australia, June 28 – July 2, 2021 Proceedings / [ed] Marcello La Rosa; Shazia Sadiq; Ernest Teniente, Cham: Springer, 2021, s. 193-209Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We propose a method for automatically extracting semantics from data sources. The availability of multiple data sources on the one hand and the lack of proper semantic documentation of such data sources on the other hand call for new strategies in integrating data sources by extracting semantics from the data source itself rather than from its documentation. In this work we focus on relational databases, observing they are created from semantically-rich designs such as ER diagrams, which are often not conveyed together with the database itself. While the relational model may be semantically-poor with respect to ontological models, the original semantically-rich design of the application domain leaves recognizable footprints that can be converted into ontology mapping patterns. In this work, we offer an algorithm to automatically detect and map a relational schema to ontology mapping patterns and offer an empirical evaluation using two benchmark datasets.

Ort, förlag, år, upplaga, sidor
Cham: Springer, 2021. s. 193-209
Serie
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 12751
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-191387DOI: 10.1007/978-3-030-79382-1_12ISI: 000716947800012Scopus ID: 2-s2.0-85111466282ISBN: 978-3-030-79381-4 (tryckt)ISBN: 978-3-030-79382-1 (digital)OAI: oai:DiVA.org:umu-191387DiVA, id: diva2:1627754
Konferens
33rd International Conference on Advanced Information Systems Engineering, CAiSE 2021
Forskningsfinansiär
EU, Horisont 2020, 863410
Anmärkning

Also part of the Information Systems and Applications, incl. Internet/Web, and HCI book sub series (LNISA, volume 12751).

Tillgänglig från: 2022-01-14 Skapad: 2022-01-14 Senast uppdaterad: 2023-03-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Calvanese, Diego

Sök vidare i DiVA

Av författaren/redaktören
Calvanese, Diego
Av organisationen
Institutionen för datavetenskap
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 241 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf