Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Maker-breaker percolation games II: Escaping to infinity
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.ORCID-id: 0000-0001-8631-4745
2021 (Engelska)Ingår i: Journal of combinatorial theory. Series B (Print), ISSN 0095-8956, E-ISSN 1096-0902, Vol. 151, s. 482-508Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Let Lambda be an infinite connected graph, and let v(0) be a vertex of Lambda. We consider the following positional game. Two players, Maker and Breaker, play in alternating turns. Initially all edges of Lambda are marked as unsafe. On each of her turns, Maker marks p unsafe edges as safe, while on each of his turns Breaker takes q unsafe edges and deletes them from the graph. Breaker wins if at any time in the game the component containing v(0) becomes finite. Otherwise if Maker is able to ensure that v(0) remains in an infinite component indefinitely, then we say she has a winning strategy. This game can be thought of as a variant of the celebrated Shannon switching game. Given (p, q) and (Lambda, v(0)), we would like to know: which of the two players has a winning strategy?

Our main result in this paper establishes that when Lambda = Z(2) and v(0) is any vertex, Maker has a winning strategy whenever p >= 2q, while Breaker has a winning strategy whenever 2p <= q. In addition, we completely determine which of the two players has a winning strategy for every pair (p, q) when Lambda is an infinite d -regular tree. Finally, we give some results for general graphs and lattices and pose some open problems. (C) 2020 Elsevier Inc. All rights reserved.

Ort, förlag, år, upplaga, sidor
Elsevier, 2021. Vol. 151, s. 482-508
Nyckelord [en]
Maker-Breaker games, Shannon switching game, Positional games
Nationell ämneskategori
Datavetenskap (datalogi) Diskret matematik
Identifikatorer
URN: urn:nbn:se:umu:diva-191614DOI: 10.1016/j.jctb.2020.06.006ISI: 000702280800020Scopus ID: 2-s2.0-85087368785OAI: oai:DiVA.org:umu-191614DiVA, id: diva2:1630319
Forskningsfinansiär
Vetenskapsrådet, 2016-03488Tillgänglig från: 2022-01-20 Skapad: 2022-01-20 Senast uppdaterad: 2022-01-20Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Day, A. NicholasFalgas-Ravry, Victor

Sök vidare i DiVA

Av författaren/redaktören
Day, A. NicholasFalgas-Ravry, Victor
Av organisationen
Institutionen för matematik och matematisk statistik
I samma tidskrift
Journal of combinatorial theory. Series B (Print)
Datavetenskap (datalogi)Diskret matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 290 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf