Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Estrus-specific synaptic inhibition of accessory olfactory bulb output neurons in response to vagino-cervical stimulation
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

This is the first study of the electrophysiological response of accessory olfactory bulb (AOB) output neurons to vagino-cervical stimulation by in vivo whole-cell recordings, allowing for measurements at synaptic input and spike output level in identified microcircuit cell types in naturally cycling mice. AOB is relaying specialized odorous information and e.g. shows plasticity essential for formation of a vomeronasal organ (VNO)-pheromonal memory of the mating male. Thus, not only VNO-pheromonal information, but also representation of coital somatosensory information needs to reach AOB. AOB in vivo responses to VNO-pheromones does not correlate in time to stimulus. We find that vagino-cervical stimuli evoke a stimulus-locked response in AOB regardless if the female is in estrus or not, and the response is sensitive to noradrenergic α1-adrenergic receptor blockade. By retrograde labeling we confirm that norepinephrine-producing locus coeruleus neurons innervate the AOB and functional anatomy demonstrated that vagino-cervical information reaches locus coeruleus in both estrus and diestrus. The spontaneous activity of mitral-tufted output neurons show propensity to fire bursts of spikes specifically during estrus suggesting state-dependent excitability of the network. Intriguingly, only during estrus do the output neurons show norepinephrine-dependent, dendro-dendritic inhibition of spike output during vagino-cervical stimulation, which is accompanied by longer activation of inhibitory granule cell layer of AOB. Thus, the estrous state of the circuit appears required for coital stimulation to evoke synaptic inhibition in main output neurons of the microcircuit, which may contribute to formation of memory of the mating male, possibly via burst-dependent increase of dendro-dendritic inhibition

National Category
Neurosciences
Identifiers
URN: urn:nbn:se:umu:diva-192822OAI: oai:DiVA.org:umu-192822DiVA, id: diva2:1641137
Available from: 2022-03-01 Created: 2022-03-01 Last updated: 2022-03-01

Open Access in DiVA

No full text in DiVA

Authority records

Lorenzon, PaoloAntos, KamilTripathi, AnushreeVedin, ViktoriaBerghard, AnnaMedini, Paolo

Search in DiVA

By author/editor
Lorenzon, PaoloAntos, KamilTripathi, AnushreeVedin, ViktoriaBerghard, AnnaMedini, Paolo
By organisation
Department of Integrative Medical Biology (IMB)Department of Molecular Biology (Faculty of Science and Technology)
Neurosciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 705 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf