Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Topology optimization of microwave frequency dividing multiplexers
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. (Design Optimization Group)ORCID-id: 0000-0002-3800-6438
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik. Department of Electronics and Electrical Communications, Menoufia University, Menouf, Egypt.ORCID-id: 0000-0002-1318-7519
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Department of Mathematics and Computer Science, Karlstad University, Karlstad, Sweden.ORCID-id: 0000-0001-8704-9584
2023 (Engelska)Ingår i: Structural and multidisciplinary optimization (Print), ISSN 1615-147X, E-ISSN 1615-1488, Vol. 66, artikel-id 106Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We use material-distribution-based topology optimization to design a three-port frequency dividing multiplexer at microwave frequencies. That is, by placing a good electric conductor inside the design domain, we aim to design a passive device that splits the incoming signal's frequencies into two frequency bands and transmits them to their respective output ports. The Helmholtz equation is used to model the time-harmonic wave propagation problem. We use the finite element method to solve the governing equation. The adjoint variable method provides the required gradients, and we solve the topology optimization problem using Svanberg's MMA algorithm. In this study, we present a technique for modeling the distribution of a good electric conductor within the design domain. In addition, we derive a power balance expression, which aids in formulating a series of three objective functions. In each successive objective function, we add more information and evaluate its impact on the results. The results show that by selecting a suitable objective function, we achieve more than 93.7 % transmission for both the frequency bands. Moreover, the numerical experiments suggest that the optimization problem is self penalized and is sensitive to the initial design.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2023. Vol. 66, artikel-id 106
Nyckelord [en]
multiplexer, electromagnetic, microwave, topology optimization, material-distribution method
Nationell ämneskategori
Beräkningsmatematik Annan elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:umu:diva-193413DOI: 10.1007/s00158-023-03561-5ISI: 000984353000001Scopus ID: 2-s2.0-85153201085OAI: oai:DiVA.org:umu-193413DiVA, id: diva2:1648575
Forskningsfinansiär
eSSENCE - An eScience Collaboration
Anmärkning

Originally included in manuscript form in thesis with title: "Topology optimization of microwave frequency dividing multiplexer". 

Tillgänglig från: 2022-03-31 Skapad: 2022-03-31 Senast uppdaterad: 2023-11-02Bibliografiskt granskad
Ingår i avhandling
1. Material distribution-based topology optimization for wave propagation problems
Öppna denna publikation i ny flik eller fönster >>Material distribution-based topology optimization for wave propagation problems
2022 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Materialdistributionsbaserad topologioptimering för vågutbredningsproblem
Abstract [en]

This thesis employs material distribution-based topology optimization for wave propagation problems. In the material distribution approach, we define a material indicator function that models the presence and absence of material in a design domain. By placing material inside the design domain, the aim is to design a device that maximizes the output power or transmission of the system. The time-harmonic linear wave propagation problem is modeled using the Helmholtz equation. The governing equation is solved using the finite element method, and an artificial boundary condition is used to truncate the domain. Moreover, a gradient-based algorithm, the method of moving asymptotes by Svanberg, is used to solve the optimization problem. An adjoint method efficiently computes the gradients of the objective function with respect to design variables. 

This thesis considers two types of wave propagation problems: acoustic (Papers I-III) and electromagnetic wave propagation (Papers IV-V). In Papers I-II, we consider a bandpass design of a subwoofer. The aim of Paper I is to reduce the computational time required to evaluate the performance of a given subwoofer layout. To accomplish this, we develop a computationally efficient hybrid 2D-3D model. A full 3D model, as well as a lumped model, validate the hybrid model's results. Paper II focuses on optimizing the topology of a subwoofer using the computationally efficient hybrid model from Paper I for single as well multiple frequencies. In Paper III, we design a highly efficient uni-directional linear acoustic waveguide. Moreover, we also challenge the use of the term acoustic diode for such uni-directional linear acoustic waveguides in literature. Paper IV deals with the design of a microwave frequency dividing multiplexer, which splits the incoming signals into two frequency bands and delivers them to their respective output ports. In Paper V, we use the adjoint method to perform the sensitivity analysis of a coupled plasmonic problem where a Helmholtz equation is coupled to the Poisson equation. We validate the sensitivities computed using the adjoint method with the finite difference approach.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2022. s. 36
Serie
Report / UMINF, ISSN 0348-0542 ; 22.05
Nyckelord
topology optimization, material distribution, wave propagation problems, Helmholtz equation, acoustics, electromagnetics, plasmonics
Nationell ämneskategori
Beräkningsmatematik
Identifikatorer
urn:nbn:se:umu:diva-193444 (URN)978-91-7855-749-3 (ISBN)978-91-7855-750-9 (ISBN)
Disputation
2022-04-28, NAT.D.320, Umeå University, Umeå, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2022-04-07 Skapad: 2022-04-01 Senast uppdaterad: 2022-04-04Bibliografiskt granskad

Open Access i DiVA

fulltext(1630 kB)23 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1630 kBChecksumma SHA-512
6c247eddb6b1e85c3155c8bf2e604733f2be6264a02d3f2b99844fb01ea432cfd6f2b83027af4f8e54916738fb436f20d31665b5406e8c8166ac6f81a1b76d4b
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Bokhari, Ahmad HasnainHassan, EmadeldeenWadbro, Eddie

Sök vidare i DiVA

Av författaren/redaktören
Bokhari, Ahmad HasnainHassan, EmadeldeenWadbro, Eddie
Av organisationen
Institutionen för datavetenskapInstitutionen för tillämpad fysik och elektronik
I samma tidskrift
Structural and multidisciplinary optimization (Print)
BeräkningsmatematikAnnan elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 23 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 358 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf