Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Learning multiobjective rough terrain traversability
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. (Digital Physics)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. (Digital Physics)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. (Digital Physics)
Swedish University of Agricultural Sciences, Sweden.ORCID-id: 0000-0002-7112-8015
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: Journal of terramechanics, ISSN 0022-4898, E-ISSN 1879-1204, Vol. 102, s. 17-26Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We present a method that uses high-resolution topography data of rough terrain, and ground vehicle simulation, to predict traversability. Traversability is expressed as three independent measures: the ability to traverse the terrain at a target speed, energy consumption, and acceleration. The measures are continuous and reflect different objectives for planning that go beyond binary classification. A deep neural network is trained to predict the traversability measures from the local heightmap and target speed. To produce training data, we use an articulated vehicle with wheeled bogie suspensions and procedurally generated terrains. We evaluate the model on laser-scanned forest terrains, previously unseen by the model. The model predicts traversability with an accuracy of 90%. Predictions rely on features from the high-dimensional terrain data that surpass local roughness and slope relative to the heading. Correlations show that the three traversability measures are complementary to each other. With an inference speed 3000 times faster than the ground truth simulation and trivially parallelizable, the model is well suited for traversability analysis and optimal path planning over large areas.

Ort, förlag, år, upplaga, sidor
Elsevier, 2022. Vol. 102, s. 17-26
Nyckelord [en]
Traversability, Rough terrain vehicle, Multibody simulation, Laser scan, Deep learning
Nationell ämneskategori
Robotik och automation
Forskningsämne
fysik; datoriserad bildanalys; data science; fysik
Identifikatorer
URN: urn:nbn:se:umu:diva-193680DOI: 10.1016/j.jterra.2022.04.002ISI: 000805039700001Scopus ID: 2-s2.0-85129503568OAI: oai:DiVA.org:umu-193680DiVA, id: diva2:1651276
Projekt
Mistra Digital Forest
Forskningsfinansiär
Mistra - Stiftelsen för miljöstrategisk forskning, 2017/14 #6eSSENCE - An eScience CollaborationSwedish National Infrastructure for Computing (SNIC), 2021/5-234Tillgänglig från: 2022-04-11 Skapad: 2022-04-11 Senast uppdaterad: 2025-02-09Bibliografiskt granskad
Ingår i avhandling
1. Terrain machine learning
Öppna denna publikation i ny flik eller fönster >>Terrain machine learning
2023 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Maskininlärning i terräng
Abstract [en]

The use of heavy vehicles in rough terrain is vital in the industry but has negative implications for the climate and ecosystem. In addition, the demand for improved efficiency underscores the need to enhance these vehicles' navigation capabilities. Navigating rough terrain presents distinct challenges, including deformable soil, surface roughness, and spatial and temporal terrain variability. Focusing on forestry, this thesis aims to improve navigation using machine learning and physics simulations. Without considering the vehicle-terrain dynamics, methods for navigation can result in unsafe or unnecessarily challenging situations. Specifically, we address route planning, control for autonomous vehicles, and soilde formations. We simulate soil using the discrete element method and vehicles using multibody dynamics.

To enhance route planning, we train a predictor model that uses a height map of the terrain to predict measures of traversability. The model has a directional dependency, couples geometric terrain features with vehicle design and dynamics, and allows for swift evaluations over large areas. The proposed method facilitates detailed route planning, using multiple objectives to yield efficient solutions.

We address autonomy in rough terrain navigation by training a controller through deep reinforcement learning. The control policy uses a local height map for perception to plan and control a forwarder with actively articulated suspensions. The controller adapts to overcome various obstacles and demonstrates skilled driving in rough terrain.

Extending beyond simulation, we address the simulation-to-reality gap of vehicles with complex hydraulic drivelines through system identification and domain randomization. The results show that having an accurate model of the actuators, modelling system delays, and preventing bang-bang control yields successful transfer. Controllers that train in simulation and transfer to reality are a step toward autonomous vehicles.

While the previously mentioned studies assume rigid terrain, we also answer if the discrete element method can capture large soil deformations due to heavy traffic. The results show that the discrete element method can represent a wide variety of natural soil and that the resulting rut depths agree well with empirical models and experimental data, including multipass scenarios.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2023. s. 38
Nyckelord
multibody dynamics simulation, rough terrain vehicle, autonomous vehicles, robotics control, discrete element method, sim-to-real, reinforcement learning
Nationell ämneskategori
Robotik och automation Annan fysik Skogsvetenskap Datorgrafik och datorseende
Forskningsämne
fysik
Identifikatorer
urn:nbn:se:umu:diva-207982 (URN)978-91-8070-060-3 (ISBN)978-91-8070-059-7 (ISBN)
Disputation
2023-06-01, NAT.D.410, Umeå, 09:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Mistra - Stiftelsen för miljöstrategisk forskning, DIA 2017/14 #6
Tillgänglig från: 2023-05-11 Skapad: 2023-05-05 Senast uppdaterad: 2025-02-05Bibliografiskt granskad

Open Access i DiVA

fulltext(3997 kB)215 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3997 kBChecksumma SHA-512
06ae292b3dc57debff71f6449dd9e9617677146b886b26ae64dd5ef307e023bbf85d85c3a9eae5c2c755635a587360ea1da2ca3ba9c7a82783d9c61dc8caf749
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Wallin, ErikWiberg, ViktorVesterlund, FolkeServin, Martin

Sök vidare i DiVA

Av författaren/redaktören
Wallin, ErikWiberg, ViktorVesterlund, FolkeHolmgren, JohanPersson, HenrikServin, Martin
Av organisationen
Institutionen för fysik
I samma tidskrift
Journal of terramechanics
Robotik och automation

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 228 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 335 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf