Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Online Product Advertisement Prediction and Explanation in Large-scale Social Networks
Aalto University, Finland.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
Nepal College of Information Tech., Nepal.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0002-8078-5172
2021 (Engelska)Ingår i: 2021 Eighth International Conference on Social Network Analysis, Management and Security (SNAMS), IEEE, 2021Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Online advertisement has become a major commercial campaign in social networks. Many big companies have invested massive resources for collecting data about the users and their web surfing habits. Utilising these data, the advertisement companies can get valuable insights about the users and their interests. The gathered information can improve the effectiveness of advertisement campaigns by identifying potential customers of a product/service or by identifying purchase patterns. A successful advertisement campaign depends on the company's ability to fully leverage these data assets. As the artificial intelligence flourish with the machine learning models which were offered as a solution for such a problem depending on dataset availability and computation power but the resulting systems suffer from a loss of transparency and interpretability, especially for end-users.In order to overcome the aforementioned problem of explainability of the models, we propose an explainable and interpretable approach to solve this problem. In the first stage, machine learning model will be used to develop a predictive model that is capable of predicting potential customers who are likely to click the advertisement of a particular product/services. This approach is tested on the public advertising dataset. In the second stage, the predictive model is further utilised by local surrogate model initially using Local Interpretable Model-agnostic Explanations (LIME) to locally approximating the model around a given prediction and then with global interpretable explanations by considering whole machine learning model at once. Finally, Contextual Importance and Utility (CIU) is used for global explanations to generate the explanations and interpretation of the prediction based on the contributing features of the dataset.

Ort, förlag, år, upplaga, sidor
IEEE, 2021.
Nyckelord [en]
CIU, Data-driven advertisement, Explainable AI, LIME, Online Advertisement Prediction, Social Networks
Nationell ämneskategori
Företagsekonomi Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-193831DOI: 10.1109/SNAMS53716.2021.9732145ISI: 000813133100006Scopus ID: 2-s2.0-85127455711ISBN: 9781665494953 (digital)OAI: oai:DiVA.org:umu-193831DiVA, id: diva2:1653142
Konferens
SNAMS 2021, 8th International Conference on Social Network Analysis, Management and Security, Virtual via Gandia, Spain, December 6-9, 2021
Tillgänglig från: 2022-04-21 Skapad: 2022-04-21 Senast uppdaterad: 2023-09-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Madhikermi, ManikFrämling, Kary

Sök vidare i DiVA

Av författaren/redaktören
Madhikermi, ManikFrämling, Kary
Av organisationen
Institutionen för datavetenskap
FöretagsekonomiDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 239 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf