Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Artificial intelligence to predict West Nile virus outbreaks with eco-climatic drivers
Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Avdelningen för hållbar hälsa.
Heidelberg institute of global health and Interdisciplinary center for scientific computing, University of Heidelberg, Im Neuenheimer Feld 205, Heidelberg, Germany.ORCID-id: 0000-0003-4030-0449
Department of statistics, Lund university, Sweden.
Department of statistics, Lund university, Sweden.
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: The Lancet Regional Health: Europe, E-ISSN 2666-7762, Vol. 17, artikel-id 100370Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background: In Europe, the frequency, intensity, and geographic range of West Nile virus (WNV)-outbreaks have increased over the past decade, with a 7.2-fold increase in 2018 compared to 2017, and a markedly expanded geographic area compared to 2010. The reasons for this increase and range expansion remain largely unknown due to the complexity of the transmission pathways and underlying disease drivers. In a first, we use advanced artificial intelligence to disentangle the contribution of eco-climatic drivers to WNV-outbreaks across Europe using decade-long (2010-2019) data at high spatial resolution. Methods: We use a high-performance machine learning classifier, XGBoost (eXtreme gradient boosting) combined with state-of-the-art XAI (eXplainable artificial intelligence) methodology to describe the predictive ability and contribution of different drivers of the emergence and transmission of WNV-outbreaks in Europe, respectively. Findings: Our model, trained on 2010-2017 data achieved an AUC (area under the receiver operating characteristic curve) score of 0.97 and 0.93 when tested with 2018 and 2019 data, respectively, showing a high discriminatory power to classify a WNV-endemic area. Overall, positive summer/spring temperatures anomalies, lower water availability index (NDWI), and drier winter conditions were found to be the main determinants of WNV-outbreaks across Europe. The climate trends of the preceding year in combination with eco-climatic predictors of the first half of the year provided a robust predictive ability of the entire transmission season ahead of time. For the extraordinary 2018 outbreak year, relatively higher spring temperatures and the abundance of Culex mosquitoes were the strongest predictors, in addition to past climatic trends. Interpretation: Our AI-based framework can be deployed to trigger rapid and timely alerts for active surveillance and vector control measures in order to intercept an imminent WNV-outbreak in Europe. Funding: The work was partially funded by the Swedish Research Council FORMAS for the project ARBOPREVENT (grant agreement 2018-05973).

Ort, förlag, år, upplaga, sidor
Elsevier, 2022. Vol. 17, artikel-id 100370
Nyckelord [en]
Climate adaptation, Culex vectors, Early warning systems, Emerging infectious disease, Europe, forecasting, Outbreaks management, Preparedness, SHAP, West Nile virus, XGBoost
Nationell ämneskategori
Folkhälsovetenskap, global hälsa, socialmedicin och epidemiologi
Identifikatorer
URN: urn:nbn:se:umu:diva-193708DOI: 10.1016/j.lanepe.2022.100370ISI: 000796373200002PubMedID: 35373173Scopus ID: 2-s2.0-85127132481OAI: oai:DiVA.org:umu-193708DiVA, id: diva2:1653911
Forskningsfinansiär
Forskningsrådet Formas, 2018-05973Tillgänglig från: 2022-04-25 Skapad: 2022-04-25 Senast uppdaterad: 2023-09-05Bibliografiskt granskad

Open Access i DiVA

fulltext(1191 kB)292 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1191 kBChecksumma SHA-512
41c068b80567985cdb0d0efd06979b3ca03d08b05f907a6512fe7660ce81f17b8ab75925a3ea652a2482e4883582a87043a67117db35ed94d64b614cd26fdf37
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Farooq, ZiaRocklöv, JoacimSewe, Maquins OdhiamboSjödin, Henrik

Sök vidare i DiVA

Av författaren/redaktören
Farooq, ZiaRocklöv, JoacimSewe, Maquins OdhiamboSjödin, Henrik
Av organisationen
Avdelningen för hållbar hälsa
I samma tidskrift
The Lancet Regional Health: Europe
Folkhälsovetenskap, global hälsa, socialmedicin och epidemiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 292 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 1297 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf