Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Abstracting Ontology-Driven Conceptual Models: Objects, Aspects, Events, and Their Parts
Free University of Bozen-Bolzano, Bolzano, Italy.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Free University of Bozen-Bolzano, Bolzano, Italy.
Free University of Bozen-Bolzano, Bolzano, Italy; University of Twente, Enschede, Netherlands.
2022 (Engelska)Ingår i: International Conference on Research Challenges in Information Science, RCIS 2022 / [ed] Renata Guizzardi; Jolita Ralyté; Xavier Franch, Springer Science+Business Media B.V., 2022, s. 372-388Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Ontology-driven conceptual models are widely used to capture information about complex and critical domains. Therefore, it is essential for these models to be comprehensible and cognitively tractable. Over the years, different techniques for complexity management in conceptual models have been suggested. Among these, a prominent strategy is model abstraction. This work extends an existing strategy for model abstraction of OntoUML models that proposes a set of graph-rewriting rules leveraging on the ontological semantics of that language. That original work, however, only addresses a set of the ontological notions covered in that language. We review and extend that rule set to cover more generally types of objects, aspects, events, and their parts.

Ort, förlag, år, upplaga, sidor
Springer Science+Business Media B.V., 2022. s. 372-388
Serie
Lecture Notes in Business Information Processing, ISSN 18651348, E-ISSN 18651356
Nyckelord [en]
Complexity management of conceptual models, Conceptual model abstraction, OntoUML
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-196172DOI: 10.1007/978-3-031-05760-1_22ISI: 000878126500022Scopus ID: 2-s2.0-85130945054ISBN: 9783031057595 (tryckt)OAI: oai:DiVA.org:umu-196172DiVA, id: diva2:1669337
Konferens
16th International Conference on Research Challenges in Information Science, RCIS 2022, Barcelona, 17-20 May, 2022.
Tillgänglig från: 2022-06-14 Skapad: 2022-06-14 Senast uppdaterad: 2023-09-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Calvanese, Diego

Sök vidare i DiVA

Av författaren/redaktören
Calvanese, Diego
Av organisationen
Institutionen för datavetenskap
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 196 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf