Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
AUGMENTATION AND CLASSIFICATION OF TIME SERIES FOR FINDING ACL INJURIES
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2022 (Engelska)Självständigt arbete på grundnivå (kandidatexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
Abstract [en]

This thesis addresses the problem where we want to apply machine learning over a small data set of multivariate time series. A challenge when classifying data is when the data set is small and overfitting is at risk. Augmentation of small data sets might avoid overfitting. The multivariate time series used in this project represent motion data of people with reconstructed ACLs and a control group. The approach was pairing motion data from the training set and using Euclidean Barycentric Averaging to create a new set of synthetic motion data so as to increase the size of the training set. The classifiers used were Dynamic Time Warping -One Nearest neighbour and Time Series Forest. In our example we found this way of increasing the training set a less productive strategy. We also found Time Series Forest to generally perform with higher accuracy on the chosen data sets, but there may be more effective augmentation strategies to avoid overfitting.

Ort, förlag, år, upplaga, sidor
2022. , s. 32
Serie
UMNAD ; 1330
Nyckelord [en]
computer science, machine learning, motion analysis, reconstructed ACL, anterior cruciate ligament, time series forest, dynamic time wapring, ACL, multivariate time series clasification, MTSC, time series classification, TSC, euclidean barycentric average, euclidean barycentric averaging, autmentation of time series, augmentation of multivariate time series, data augmentation, augmentation
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-197105OAI: oai:DiVA.org:umu-197105DiVA, id: diva2:1674949
Externt samarbete
FoU Region Västerbotten
Utbildningsprogram
Kandidatprogrammet i Datavetenskap
Handledare
Examinatorer
Tillgänglig från: 2022-06-23 Skapad: 2022-06-22 Senast uppdaterad: 2022-06-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Sök vidare i DiVA

Av författaren/redaktören
Johansson, Marie-Louise
Av organisationen
Institutionen för datavetenskap
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 394 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf