Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Counting query answers over a DL-Lite knowledge base
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Free University of Bozen-Bolzano, Italy.ORCID-id: 0000-0001-5174-9693
Free University of Bozen-Bolzano, Italy.
Free University of Bozen-Bolzano, Italy.
Max-Planck-Institut für Informatik, Germany.
2021 (Engelska)Ingår i: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence: Yokohama / [ed] Christian Bessiere, International Joint Conferences on Artificial Intelligence , 2021, s. 1658-1666Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Counting answers to a query is an operation supported by virtually all database management systems. In this paper we focus on counting answers over a Knowledge Base (KB), which may be viewed as a database enriched with background knowledge about the domain under consideration. In particular, we place our work in the context of Ontology-Mediated Query Answering/Ontology-based Data Access (OMQA/OBDA), where the language used for the ontology is a member of the DL-Lite family and the data is a (usually virtual) set of assertions. We study the data complexity of query answering, for different members of the DL-Lite family that include number restrictions, and for variants of conjunctive queries with counting that differ with respect to their shape (connected, branching, rooted). We improve upon existing results by providing P and coNP lower bounds, and upper bounds in P and LogSpace. For the LogSpace case, we have devised a novel query rewriting technique into first-order logic with counting.

Ort, förlag, år, upplaga, sidor
International Joint Conferences on Artificial Intelligence , 2021. s. 1658-1666
Serie
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), ISSN 1045-0823
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:umu:diva-197972Scopus ID: 2-s2.0-85091463722ISBN: 9780999241165 (digital)OAI: oai:DiVA.org:umu-197972DiVA, id: diva2:1682795
Konferens
IJCAI 2020, 29th International Joint Conference on Artificial Intelligence, Yokohama, Japan, January 7-15, 2021
Tillgänglig från: 2022-07-12 Skapad: 2022-07-12 Senast uppdaterad: 2022-07-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

ScopusIJCAI proceedingsFull text (pdf)

Person

Calvanese, Diego

Sök vidare i DiVA

Av författaren/redaktören
Calvanese, Diego
Av organisationen
Institutionen för datavetenskap
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 155 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf