Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
COVID-19-Associated Lung Lesion Detection by Annotating Medical Image with Semi Self-Supervised Technique
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0003-2514-3043
2022 (Engelska)Ingår i: Electronics, E-ISSN 2079-9292, Vol. 11, nr 18, artikel-id 2893Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Diagnosing COVID-19 infection through the classification of chest images using machine learning techniques faces many controversial problems owing to the intrinsic nature of medical image data and classification architectures. The detection of lesions caused by COVID-19 in the human lung with properties such as location, size, and distribution is more practical and meaningful to medical workers for severity assessment, progress monitoring, and treatment, thus improving patients’ recovery. We proposed a COVID-19-associated lung lesion detector based on an object detection architecture. It correctly learns disease-relevant features by focusing on lung lesion annotation data of medical images. An annotated COVID-19 image dataset is currently nonexistent. We designed our semi-self-supervised method, which can extract knowledge from available annotated pneumonia image data and guide a novice in annotating lesions on COVID-19 images in the absence of a medical specialist. We prepared a sufficient dataset with nearly 8000 lung lesion annotations to train our deep learning model. We comprehensively evaluated our model on a test dataset with nearly 1500 annotations. The results demonstrated that the COVID-19 images annotated by our method significantly enhanced the model’s accuracy by as much as 1.68 times, and our model competes with commercialized solutions. Finally, all experimental data from multiple sources with different annotation data formats are standardized into a unified COCO format and publicly available to the research community to accelerate research on the detection of COVID-19 using deep learning.

Ort, förlag, år, upplaga, sidor
MDPI, 2022. Vol. 11, nr 18, artikel-id 2893
Nyckelord [en]
COVID-19, object detection, deep learning
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
datalogi
Identifikatorer
URN: urn:nbn:se:umu:diva-199446DOI: 10.3390/electronics11182893ISI: 000858319200001Scopus ID: 2-s2.0-85138685291OAI: oai:DiVA.org:umu-199446DiVA, id: diva2:1696590
Tillgänglig från: 2022-09-17 Skapad: 2022-09-17 Senast uppdaterad: 2022-10-14Bibliografiskt granskad

Open Access i DiVA

fulltext(11891 kB)167 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 11891 kBChecksumma SHA-512
07adb78e45aa7d061d80f533233a1674dc126468e41498430880b96f7b3789ae3c21cb66820d8410ef1e9433d1944c75a1eea6112e051e5b0954a224ddd698a3
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Seo, Eunil

Sök vidare i DiVA

Av författaren/redaktören
Seo, Eunil
Av organisationen
Institutionen för datavetenskap
I samma tidskrift
Electronics
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 167 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 248 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf