Umeå universitets logga

umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Simulation-to-reality transfer to control a forwarder with active suspensions through deep reinforcement learning
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. (Digital Physics)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik. (Digital Physics)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.ORCID-id: 0000-0001-8704-9584
Skogforsk.
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: Proceedings of the joint 44th annual meeting of council on forest engineering (COFE), the 54th international symposiumon forest mechanization (FORMEC), and 2022 IUFRO all-division 3 meeting: One big family - shaping our future together / [ed] Woodam Chung; Christian Kanzian; Peter McNeary, Council of forest engineering , 2022, s. 138-138Konferensbidrag, Muntlig presentation med publicerat abstract (Refereegranskat)
Abstract [en]

Automating the loaded and unloaded driving of a forwarder has the potential to reduce operational costsup to 10% in cut-to-length logging, but remains a challening and unsolved task. The complex interaction between the vehicle and terrain requires the controller to percieve its surroundings and thestate of the vehicle to plan for traversal. Because the state space is high dimensional and the systemdynamics cannot be formulated in closed form or easily approximated, traditional control methods areinadequate. Under these conditions, where learning to act in the environement is easier than learning thesystem dynamics, model free reinforcement learning is a promising option. We use deep reinforcementlearning for control of a 16-tonne forwarder with actively articulated suspensions. To efficiently gathergeneralizable experience, the control policies were safetly trained in simulation while varying severaldomain parameters. Each policy is trained during what correponds to roughly one month of real time.In simulation, the controller shows the ability to traverse rough terrains reconstruced from high-densitylaser scans and handles slopes up to 27◦. To compare the simulated to real performance we transfer thecontrol policies to the physical vehicle. Our results provide insight on how to improve policy transfer toheavy and expensive forest machines.

Ort, förlag, år, upplaga, sidor
Council of forest engineering , 2022. s. 138-138
Nationell ämneskategori
Robotik och automation Datorgrafik och datorseende Annan fysik
Forskningsämne
fysik
Identifikatorer
URN: urn:nbn:se:umu:diva-199447ISBN: 979-8-9855282-1-3 (tryckt)OAI: oai:DiVA.org:umu-199447DiVA, id: diva2:1696591
Konferens
International Conference of Forest Engineering COFE-FORMEC-IUFRO, One Big Family: Shaping Our Future Together, Corvallis, Oregon, USA, October 4-7, 2022
Tillgänglig från: 2022-09-17 Skapad: 2022-09-17 Senast uppdaterad: 2025-02-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Conference abstracts

Person

Wiberg, ViktorWallin, ErikWadbro, EddieServin, Martin

Sök vidare i DiVA

Av författaren/redaktören
Wiberg, ViktorWallin, ErikWadbro, EddieServin, Martin
Av organisationen
Institutionen för fysikInstitutionen för datavetenskap
Robotik och automationDatorgrafik och datorseendeAnnan fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 292 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf