Umeå University's logo

umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Aerosol-based deposition of broadband antireflective silica coating with closed mesoporous structure
Umeå University, Faculty of Science and Technology, Department of Physics. Absolicon Solar Collector AB, Fiskaregatan 11, Härnösand, Sweden.
RISE Research Institutes of Sweden, Division of Bioeconomy and Health, Department of Materials and Surface Design, Drottning Kristinas väg 45, Stockholm, Sweden.
RISE Research Institutes of Sweden, Division of Built Environment, Department of Building and Real Estate, Glass unit, Vejdes plats 3, Växjö, Sweden.
RISE Research Institutes of Sweden, Division of Built Environment, Department of Building and Real Estate, Glass unit, Vejdes plats 3, Växjö, Sweden.
Show others and affiliations
2023 (English)In: Solar Energy Materials and Solar Cells, ISSN 0927-0248, E-ISSN 1879-3398, Vol. 250, article id 112078Article in journal (Refereed) Published
Abstract [en]

Solar energy will be a crucial part of the sustainable, fossil free energy production of the future. A majority of this will be produced by solar collectors and photovoltaics. Important for the efficient utilization of the incident solar energy for both technologies are a cover glass with antireflective coatings giving it a high solar transmittance. In the current paper we describe the development of antireflective mesoporous silica coatings on low-iron float glass using the aerosol-based nFOG™ deposition technique. The coatings exhibit a hexagonal and closed pore structure, high smoothness, superhydrophilic properties (contact angle <5°) and consistent thicknesses of approximately 110 nm. This is in line with optimal thickness determined from simulations of the antireflective behavior. Low-iron float glass coated on both sides show a highly reproducible solar weighted transmittance of 95% in the wavelength range 300–2500 nm and an antireflective effect increasing with incident angle. The smoothness, closed pores and low contact angle indicate a high cleanability, which in combination with the high transmittance render a competitive broadband antireflective coating well adapted for solar glass applications.

Place, publisher, year, edition, pages
Elsevier, 2023. Vol. 250, article id 112078
Keywords [en]
Aerosol-based deposition, Antireflective coating, Hexagonal mesoporous silica, nFOG™, Solar collector, Solar glass
National Category
Manufacturing, Surface and Joining Technology
Identifiers
URN: urn:nbn:se:umu:diva-201188DOI: 10.1016/j.solmat.2022.112078ISI: 000884106800001Scopus ID: 2-s2.0-85141234079OAI: oai:DiVA.org:umu-201188DiVA, id: diva2:1715071
Funder
Vinnova, 2018-02588Swedish Research Council, 2017-59504862Swedish Energy Agency, 45419-1Swedish Energy Agency, 52487-1Available from: 2022-12-01 Created: 2022-12-01 Last updated: 2025-04-25Bibliographically approved
In thesis
1. Heating a sustainable future: optical coatings for solar collectors
Open this publication in new window or tab >>Heating a sustainable future: optical coatings for solar collectors
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Uppvärmning av en hållbar framtid : optiska beläggningar för solfångare
Abstract [en]

The green transition is the great undertaking of our time, and it will require significant ingenuity and change in all areas of society. Most urgently, perhaps, regarding energy, where the demand for transport, electricity and heat must be met by renewables instead of fossil fuels. Solar thermal is one alternative with the potential to contribute substantially to sustainable heat production. To realize this potential, the availability of competitive, sustainable and cost effective optical coatings for solar collectors is a prerequisite. The coatings used today are primarily produced with expensive vacuum-based deposition techniques, transferring a hampering cost to the collectors, which impede the deployment of solar thermal as an energy source. Herein, we show that by leveraging scalable deposition techniques, with elaborate material choices and innovative nanoscale designs, it is possible to produce sustainable coatings that are highly competitive with regards to cost and performance.Using a scalable aerosol-based deposition technique, an antireflective mesoporous silica coating, commonly implemented in advanced solar technologies, is produced with an ordered hexagonal pore structure. The attention to optical thickness and pore structure facilitates a superior performance and an increased durability, making it especially suitable for arid climates. Moreover, we present several methods to achieve solar selectivity for the receiver. We leverage the large potential window of a deep eutectic solvent to facilitate electrodeposition of a texture-based cobalt-chromium coating, making an otherwise unsustainable technique viable today. High selectivity is also achieved by manipulating interference effects in coatings produced through precise control of thermal annealing of steel and ultrasonic spray coating of carbon nanotube composites. Such optical effects are only achieved for selective coatings deposited with more advanced and expensive techniques.Science is an iterative process of small incremental advances, often seemingly insignificant in the moment, which over time accumulate to surprisingly quick change. Here we present examples of sustainable, scalable, durable and cost competitive antireflective and solar selective coatings, thereby hopefully contributing to an accelerated implementation of solar thermal technologies.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2025. p. 64
Keywords
Solar thermal collectors, optical coatings, solar selective coatings, antireflective coatings
National Category
Nanotechnology for Energy Applications
Research subject
Physics; Materials Science; nanomaterials
Identifiers
urn:nbn:se:umu:diva-238174 (URN)978-91-8070-654-4 (ISBN)978-91-8070-655-1 (ISBN)
Public defence
2025-05-23, KB301-Lilla hörsalen, Linnaeus väg 6, 907 36 Umeå, Umeå, 09:00 (English)
Opponent
Supervisors
Note

In thesis listed paper "Solar selective carbon nanotube composite coatings on optically tunable undercoating" is in the printed thesis published with title "Towards Solar Selective Carbon Nanotube Composites on Optically Tunable Undercoatings". 

Available from: 2025-04-30 Created: 2025-04-25 Last updated: 2025-04-28Bibliographically approved

Open Access in DiVA

fulltext(5512 kB)315 downloads
File information
File name FULLTEXT01.pdfFile size 5512 kBChecksum SHA-512
2b99b2bb9d11ad1911782f6f046e55ab37473fe80c16cce05fd33ac825f15317bc895b45ac0b921b1ff567ab078a454af02c65304680c539a61680ef4ddce27c
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Zäll, ErikWågberg, Thomas

Search in DiVA

By author/editor
Zäll, ErikWågberg, Thomas
By organisation
Department of Physics
In the same journal
Solar Energy Materials and Solar Cells
Manufacturing, Surface and Joining Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 315 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 316 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf